

PORTLAND HARBOR RI/FS

ROUND 3 LAMPREY (*LAMPETRA* SP.) PHASE 1 TOXICITY TESTING REPORT

DO NOT QUOTE OR CITE

This document is currently under review by US EPA and its federal, state, and tribal partners, and is subject to change in whole or in part.

April 6, 2007

Prepared for:

The Lower Willamette Group

Prepared by:

Windward Environmental LLC

WE-07-0001

i

TABLE OF CONTENTS

. ii
iii
1 1
3 4
6 8 10
12 12 17
20
21

LIST OF TABLES

Table 2-1. Lamprey ammocoetes collection information	3
Table 3-1. Water quality conditions during holding	7
Table 3-2. Water quality conditions during the 12° C versus 17° C holding	7
Table 3-3. Water quality conditions during the 12°C versus 22°C holding	8
Table 3-4. Summary of test conditions for the 96-hour acute range-finding toxicity tests and	f
temperature tests with lamprey ammocoetes (Lampetra sp.)	9
Table 3-5. Laboratory Methods for the Analysis of Toxicity Test Solution Samples	10
Table 4-1. Daily survival of ammocoetes and chemical concentrations of copper	12
Table 4-2. Copper concentrations throughout the range-finding test	12
Table 4-3. Water quality conditions during range-finding test with copper	13
Table 4-4. Daily survival of ammocoetes and chemical concentrations of aniline	13
Table 4-5. Aniline concentrations throughout the range-finding test	13
Table 4-6. Water quality conditions during range-finding test with aniline	14
Table 4-7. Daily survival of ammocoetes and chemical concentrations of pentachloropheno	1 14
Table 4-8. Pentachlorophenol concentrations throughout the range-finding test	15
Table 4-9. Water quality conditions during range-finding test with pentachlorophenol	15
Table 4-10. Daily survival of ammocoetes and chemical concentrations of lindane	15
Table 4-11. Chemical concentrations of lindane throughout the range-finding test	16
Table 4-12. Water quality conditions during range-finding test with lindane	16
Table 4-13. Daily survival of ammocoetes and chemical concentrations of diazinon	16
Table 4-14. Chemical concentrations of diazinon throughout the range-finding test	17
Table 4-15. Water quality conditions during range-finding test with diazinon	17
Table 4-16. Daily survival of ammocoetes at 12° and 17° C	18
Table 4-17. Water quality conditions during the 12° versus 17° C temperature test	18
Table 4-18. Daily survival of ammocoetes at 12° and 22° C	18
Table 4-19. Water quality conditions during the 12° versus 17° C temperature test	19

LIST OF FIGURES

Figure 2-1.	Round 3	Lamprey (La	<i>mpetra</i> sp.)	Ammocoete	Sampling :	Locations for	or Toxicity	
Testing	g							5

LIST OF ACRONYMS

ASTM American Society for Testing and Materials

C centigrade

CaCO3 calcium carbonate

CAS Columbia Analytical Services, Inc.

EPA US Environmental Protection Agency

FSP field sampling plan **Integral** Integral Consulting, Inc.

LC50 concentration that is lethal to 50% of an exposed population

LWG Lower Willamette Group LWR Lower Willamette River

NAS Northwestern Aquatic Sciences

pps pulses per second

QAPP quality assurance project plan

RM river mile

SD standard deviation
TRV toxicity reference value
USGS US Geological Survey

Windward Environmental LLC

1

1.0 INTRODUCTION

Lamprey ammocoetes are the only detritivorous fish present in the Lower Willamette River (LWR). Four species of lamprey may exist in the LWR, and of these, the Pacific lamprey (*Lampetra tridentate*) was selected as the representative species for detritivorous fish (Integral et al. 2004). In the *Portland Harbor Remedial Investigation/Feasibility Study Programmatic Work Plan* (Integral et al. 2004), a tissue-residue approach was proposed to assess risks to lamprey ammocoetes. Tissue residues were to be compared to toxicity reference values (TRVs) from the scientific literature. The suitability of using TRVs for surrogate species to assess risks to lamprey ammocoetes was later questioned by the US Environmental Protection Agency (EPA) and its partners during the Round 3 data gaps analysis, and they requested acute toxicity testing to compare lamprey ammocoetes sensitivity against published toxicity data for the most sensitive surrogate species (EPA 2006).

The first phase of the acute toxicity testing was conducted in the fall of 2006; the second phase is planned for the spring/summer of 2007. This data report describes the objectives, methods, and procedures used during the Phase 1 toxicity testing with lamprey ammocoetes (*Lampetra* sp.) and the results of the testing.

1.1 OBJECTIVES OF TOXICITY TESTING

The specific objectives of the Phase 1 lamprey ammocoete collection and testing effort were to:

- Establish proper methods for the collection of lamprey ammocoetes, including holding in the field and transport to the laboratory
- Establish proper methods for holding the ammocoetes in the laboratory, including feeding and temperature regimens
- Establish the proper exposure system, including size of exposure chambers, rate of flow through, and feeding requirements
- Perform range-finding toxicity tests with the following six chemicals: copper, aniline, pentachlorophenol, naphthalene, diazinon, and lindane

As stated in the objectives, the primary goal of the Phase 1 sampling and testing effort was to ensure that ammocoetes could be collected and transported to the laboratory in good condition and that the ammocoetes could be successfully maintained and tested under laboratory conditions. A proper exposure system was developed for the static renewal testing; the development of the flow-through system was proposed for the Phase 2 testing. Range-finding tests were conducted with copper, aniline, pentachlorophenol,

diazinon, and lindane. Because of the high volatility of naphthalene, the range-finding test with naphthalene was delayed until Phase 2 when it will be conducted as a flow-through test.

1.2 REPORT ORGANIZATION

The remaining sections of this document describe the field sampling procedures, laboratory holding methods, and toxicity tests of the lamprey ammocoetes. Section 2.0 presents the sampling procedures, and Section 3.0 describes laboratory methods. The toxicity test and temperature test results are presented in Section 4.0; cited references are listed in Section 5.0. Supporting information, including field collection logbooks and chain-of-custody forms are provided in Appendix A. The toxicity testing report from Northwestern Aquatic Sciences (NAS), including all raw laboratory data, is presented in Appendix B. The validation report for the toxicity testing is presented in Appendix C, and the validation report for the water chemistry is presented in Appendix D. Photo documentation of the field collection, holding facility, and toxicity testing is presented in Appendix E.

2.0 FIELD METHODS

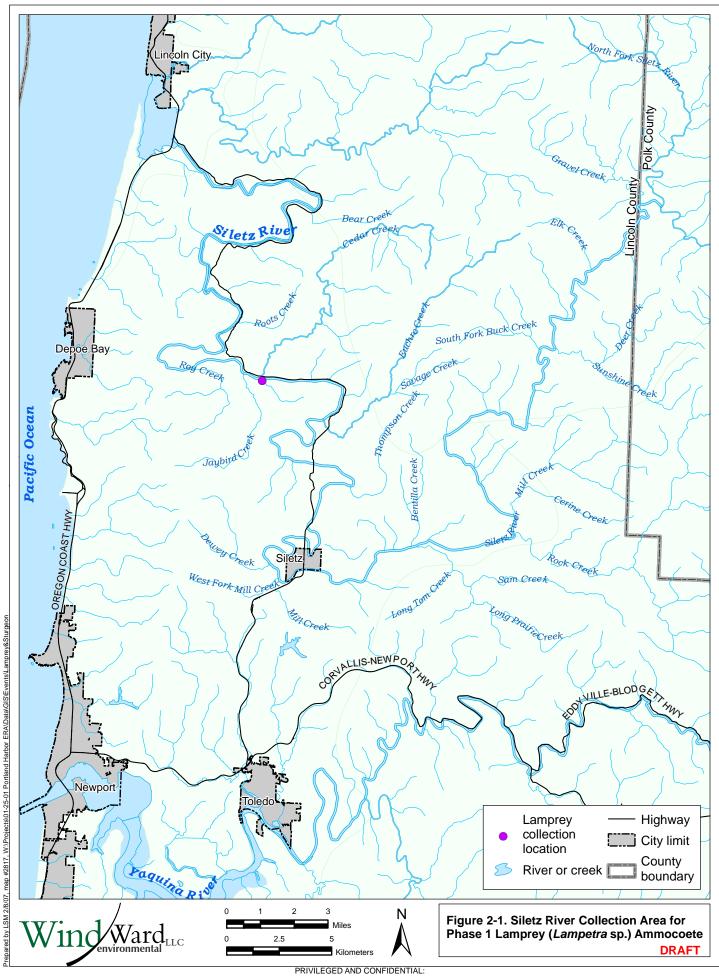
This section described the methods used to collected lamprey ammocoetes in the field, including water quality parameters measured in the Siletz River.

2.1 AMMOCOETE COLLECTION

Lamprey ammocoetes were collected from the main stem of the Siletz River near the Cedar Creek confluence near Newport, Oregon, on October 17 and 18 and October 23 and 24, 2006 (Figure 2-1). The sampling location was selected upon consultation with Stan Van de Wetering of the Siletz Tribe and was reached on foot. The permitted maximum number of 800 lamprey ammocoetes was collected from an area covering approximately 125 ft². The water temperature was measured daily before the sampling effort was initiated. The substrate was mostly medium to fine sands with a silty surface layer and some leaf litter. The sampling water depths ranged from 4 to 6 in. up to approximately 2 ft. The sampling dates, daily estimated catch of ammocoetes, and water quality parameters are presented in Table 2-1.

Table 2-1. Lan	nprey ammocoetes	collection	information
----------------	------------------	------------	-------------

Collection Date	Estimated No. of Ammocoetes	Field Temperature (° C)	Laboratory Temperature (° C) ^a	Hardness (mg/L as CaCO ₃)	Alkalinity (mg/L as CaCO ₃)	pH (unitless)	Dissolved Oxygen (mg/L)	Conductivity (µmhos/cm)
10/17/2006	58	12.9	13.6	26	20	5.3	8.2	62
10/18/2006	250	12.6	12.4	26	20	6.0	9.6	95
10/23/2006	200	12.1	11.5	26	20	6.8	8.4	75
10/24/2006	300	11.8	10.6	51	90	6.0	8.8	150


^a Measured in the coolers at delivery.

CaCO₃ – calcium carbonate

A Smith-Root, Inc., LR-24 dual-train backpack electroshocker was used during the collection. An initial setting of 3 pulses per second (pps) and 25% duty cycle was selected to withdraw the ammocoetes from the sediment, and a second setting of 30 pps and 25% duty cycle was applied to stun and capture the ammocoetes. Captured ammocoetes were placed in a pre-cleaned cooler partially filled with site water and approximately 6 in. of site sediment. Fifty ammocoetes were placed in each cooler. Frozen gel packs were affixed to the inside lids of the coolers to keep the water temperature cool during holding and transport to the laboratory. At the end of the sampling day, the coolers were then filled with additional site water before being transported to NAS in Newport, Oregon. Photos of the sampling effort are presented in Appendix E.

2.2 DEVIATIONS FROM THE FSP

The collection of lamprey ammocoetes in the field was performed with no deviations from the FSP.

3.0 LABORATORY METHODS

This section describes the methods used to hold the lamprey ammocoetes in the laboratory, the toxicity and temperature testing methods, the analytical methods of the confirmatory water samples, and deviations from the FSP and quality assurance plan (QAPP).

3.1 LAMPREY AMMOCOETE HOLDING

Upon receipt of the ammocoetes at the laboratory, the water temperature was measured in the coolers, and the ammocoetes were transferred into 10-gal. tanks with approximately 50 organisms per tank. The tanks contained approximately 2 to 3 in. of sediment and 26 L of water that was aerated. The water was supplied using a flow-through system at a rate of approximately 35 mL/minute (approximately two volume changes per day). In addition, two-thirds of the water volume in each tank were replaced daily. The tanks were held at a temperature of $12.3^{\circ} \pm 0.5^{\circ}$ C and ambient laboratory lightning (50 to 73 footcandles) at a daily photoperiod of 16 hours of light and 8 hours of darkness.

Upon receipt of all ammocoetes, a representative subsample of six ammocoetes was selected, and the six ammocoetes were weighed and measured for length. They ranged from 28 to 84 mm in length and from 0.04 to 0.78 g in weight. The ammocoetes were acclimated in the laboratory for 2 to 3 weeks before testing was initiated. Normal behavior for lamprey ammocoetes is to immediately burrow in sediment and remain there. If any individuals are observed swimming around and not burrowing, it is an indication that the ammocoetes are under some sort of stress. A total of six lamprey were found dead on the sediment surface within the first few days after laboratory receipt of the animals, probably from being damaged during field sampling. Four lamprey from the 10/18/06 batch died, and two lamprey from the 10/24/06 batch died. None of these animals were able to burrow in the sediment. All other lamprey ammocoetes burrowed in the sediment and were not observed swimming in the water column. Lamprey ammocoetes were not fed during the first month of holding on the recommendation of William Swink, MS, a research fishery biologist with the US Geological Survey (USGS) at the Hammond Bay Biological Station. Table 3-1 summarizes the water quality conditions in the tanks during the first 4 weeks of holding. Additional details on the ammocoete holding conditions are presented in Appendix B.

¹ Mr. Swink has more than 15 years of experience working with sea lamprey, including culture of larval lampreys; effects of density on growth of larvae; and survival, growth, and feeding of newly metamorphosed lampreys.

Mean ± SD **Parameter** Unit ° C 12.3 ± 0.5 **Temperature** Dissolved oxygen mg/L 10.9 ± 0.6 рН unitless 7.6 ± 0.4 Conductivity umhos/cm 129 ± 5 Hardness mg/L as CaCO₃ 48 ± 4 mg/L as CaCO₃ 44 ± 9 Alkalinity

Table 3-1. Water quality conditions during holding

CaCO₃ – calcium carbonate

SD - standard deviation

After completion of the last range-finding test, the remaining lamprey ammocoetes were fed 50 mL of yeast slurry (2 g yeast in 400 mL water). The flow was turned off prior to feeding and resumed after 24 hours. After feeding, the ammocoetes were separated into two different temperature-controlled rooms (12° and 17° C). The ammocoetes that were placed in the 17° C room were acclimated for 10 days before the temperature test was initiated. Table 3-2 summarizes the water quality conditions in the tanks during the 10 days of holding. After initiation of the first temperature test, the temperature in the room that was held at 17° C was raised to 22° C. The ammocoetes were acclimated for 7 days to the 22° C before the second temperature test was initiated. Table 3-3 summarizes the water quality conditions in the tanks during the 7 days of holding. All remaining lamprey ammocoetes were destroyed after successful completion of the second temperature test.

Table 3-2. Water quality conditions during the 12° C versus 17° C holding

Parameter	Unit	12° C Mean ± SD	17° C Mean ± SD
Temperature	° C	11.7 ± 0.2	15.3 ± 1.8^{a}
Dissolved oxygen	mg/L	11.3 ± 0.2	10.0 ± 0.7
рН	unitless	7.5 ± 0.1	7.5 ± 0.2
Conductivity	μmhos/cm	136 ± 9	138 ± 6
Hardness	mg/L as CaCO ₃	57 ± 5	58 ± 4
Alkalinity	mg/L as CaCO ₃	44 ± 7	44 ± 5

^a The mean temperature includes all measurements from the initiation of the temperature increase in the holding tank until the test initiation.

CaCO₃ – calcium carbonate

SD - standard deviation

Tuole 5 5. Water quality conditions during the 12 c versus 22 c notating					
Parameter	Unit	12° C Mean ± SD	22° C Mean ± SD		
Temperature	° C	11.6 ± 0.4	19.7 ± 1.8^{a}		
Dissolved oxygen	mg/L	10.9 ± 0.3	8.8 ± 0.1		
pН	unitless	7.2 ± 0.2	7.3 ± 0.1		
Conductivity	μmhos/cm	134 ± 9	153 ± 9		
Hardness	mg/L as CaCO ₃	55 ± 5	51 ± 0		
Alkalinity	mg/L as CaCO ₂	39 ± 4	39 ± 8		

Table 3-3. Water quality conditions during the 12°C versus 22°C holding

CaCO₃ – calcium carbonate

SD – standard deviation

3.2 LAMPREY AMMOCOETE TESTING

Phase 1 toxicity testing consisted of range-finding tests with five of the six chemicals (i.e., copper, aniline, pentachlorophenol, diazinon, and lindane). Static renewal testing with naphthalene was explored. However, because of the volatility of this chemical, it was decided, in cooperation with EPA and its partners, to postpone testing with naphthalene until the flow-through testing effort in Phase 2. The range-finding tests were 96-hour static renewal tests (water-only tests). The tests were conducted with a control and four widely spaced concentrations in a logarithmic series. The tests included one replicate that contained five ammocoetes for each concentration and the control. The loading rate ranged from 0.38 to 1.05 g of organism/L. The tests were conducted in soft water $(45 \pm 9 \text{ mg/L as CaCO}_3)$, at a temperature of $12^{\circ} \pm 1.0^{\circ}$ C, and with a light cycle of 16 hours of light and 8 hours of darkness at a light intensity ranging from 50 to 73 footcandles. The ammocoetes were not fed during the range-finding tests. At 48 hours into the test, approximately 80% of the water was renewed. The numbers of live and dead ammocoetes were counted daily and at test termination in the control and the four test concentrations. At test termination, the lengths and weights of all control ammocoetes were measured. The average length was 67 ± 11 mm, and the average weight $0.45 \pm$ 0.20 g.

The concentrations of the five chemicals (i.e., copper, pentachlorophenol, lindane, diazinon, and aniline) used in the range-finding tests were selected by NAS based on LC50s (concentrations that are lethal to 50% of an exposed population) for other fish presented in literature, the results of the small, preliminary range-finding tests conducted prior to the range-finding tests, and best professional judgment. The small, preliminary range-finding tests consisted of 96-hour exposures of a single lamprey ammocoete in one replicate to a wide range of concentrations for each chemical. The number of concentrations ranged from three and a control for naphthalene to six and a control for copper. Thus, for example, the preliminary range-finding test for copper was conducted on seven ammocoetes in seven replicates, each exposed to a different concentration. Based on the preliminary range-finding test with naphthalene and additional chemistry

^a The mean temperature includes all measurements from the initiation of the temperature increase in the holding tank until the test initiation.

work (getting the naphthalene into solution and keeping it in solution), testing with naphthalene was delayed until Phase 2.

The nominal concentrations prepared for each chemical by the toxicity testing laboratory and used in the range-finding tests were confirmed through chemical analyses. Water samples were collected from the control and each test concentration at test initiation, 48-hour renewal (new and old solutions), and test termination. Additional information on chemical purity and the preparation of stock solutions is presented in Appendix B.

After completion of the range-finding tests, additional testing, as requested by EPA and its partners, was performed to evaluate the effects of temperature on lamprey ammocoetes. Two temperature tests were performed: one comparing survival in 12°C water with survival in 17°C water, and another comparing survival in 12°C water with survival in 22°C water. These tests were performed in four replicates with five organisms per replicate.

Because there is no standard protocol for acute toxicity testing with lamprey ammocoetes, the test procedures were based on the methods for measuring acute toxicity with other fish species as described in EPA (2002) and American Society for Testing and Materials (ASTM) (1996) guidance. The test conditions and test acceptability criterion are summarized in Table 3-4.

Table 3-4. Summary of test conditions for the 96-hour acute range-finding toxicity tests and temperature tests with lamprey ammocoetes (*Lampetra* sp.)

Parameter	Condition or Regimen
Test type	static renewal
Test duration	96 hours
Temperature	12° ± 1° C; 17° ± 1° C; and 22° ± 1° C
Light quality	ambient laboratory
Illuminance	49.5 to 73.0 foot-candles
Photoperiod	16 light:8 dark
Test chamber size	9.5-L glass aquaria covered with Plexiglas plates
Solution volume	2.8 L per aquarium
Renewal of test solution	once at 48 hours
Test organisms	lamprey ammocoetes
Number of test treatments	4 test treatments for the range-finding tests
Number of replicates per treatment	1 replicate for the range-finding tests; 4 replicates for the temperature tests
Organisms per replicate	5 organisms per replicate (loading rate between 0.38 and 1.05 g/L)
Number of organisms per exposure concentration	5 organisms per exposure concentration in range-finding tests; 20 organisms per exposure temperature in temperature tests
Test chamber cleaning	none
Feeding	none
Aeration	gentle aeration not exceeding 100 bubbles/min.

Table 3-4. Summary of test conditions for the 96-hour acute range-finding toxicity tests and temperature tests with lamprey ammocoetes (*Lampetra* sp.)

Parameter	Condition or Regimen	
Dilution water	de-chlorinated municipal tap water with a hardness of 45 ± 9 mg/L spiked with the selected chemicals	
Test concentrations	4 test concentrations and a control	
Endpoint	survival	
Test acceptability criterion	≥ 90% survival in the control	

3.3 WATER ANALYTICAL METHODS

The nominal test solution concentrations used in each 96-hour range-finding test were confirmed by Columbia Analytical Services, Inc. (CAS), of Kelso, Washington. Test solution samples were collected during test initiation, 48-hour renewal (new and old solutions), and test termination and shipped to CAS. Samples were analyzed according to the methods presented in Table 3-5.

Table 3-5. Laboratory Methods for the Analysis of Toxicity Test Solution Samples

	Laboratory Method			
Chemical	Sample Preparation	Quantitative Analysis		
Copper	EPA 3005/CLP	EPA 200.8		
Lindane	EPA 3535	EPA 8081A		
Diazinon	EPA 3520C	EPA 8141A		
Aniline	EPA 3520C	EPA 8270C		
Pentachlorophenol	EPA 8151M	EPA 8151M		

EPA – US Environmental Protection Agency

Data validation was completed by EcoChem in Seattle, Washington. Data quality is acceptable and meets the objectives of the lamprey toxicity study. EcoChem's data validation report is provided in Appendix D.

3.4 DEVIATIONS FROM THE FSP AND QAPP

Lamprey ammocoetes were not fed during the first month of holding on the recommendation of William Swink, MS, a research fishery biologist with the USGS at the Hammond Bay Biological Station. After chemical testing was completed, holding was extended beyond the initial planned duration, so the remaining lamprey ammocoetes were fed a yeast slurry based on the methods used by USGS at the Hammond Bay Biological Station.

Dilution water hardness was 51 mg/L as CaCO₃ in all batches of test water used. This is slightly above the water hardness listed in the QAPP (< 50 mg/L). Collection site water hardness ranged from 20 to 51 mg/L.

The loading rate of 1.1 g/L recommended in the EPA protocol (EPA 2002) and cited in the QAPP was not exceeded. However, in the conditional approval letter received on October 31, 2006, EPA recommended using the ASTM loading rate of 0.8 g of organism/L. This lower loading rate was exceeded in the range-finding tests with aniline (0.96 g/L), diazinon (0.93 g/L), 12°C versus 17°C (0.98 and 1.05 g/L, respectively), and in 12°C of the 12°C versus 22°C (0.86 g/L).

Chemical analyses of the test solution samples were completed as described in the QAPP, with one exception. Analyses for pentachlorophenol were completed using EPA method 8151M rather than method 8270C, which was stated in the QAPP. Method 8151M provides a lower detection limit at a lower cost than method 8270C and had been used for the analysis of pentachlorophenol in sediment samples. The use of method 8151M did not affect data quality and improved method sensitivity. There were no other deviations from the QAPP during the analysis and validation of Phase 1 test solution samples.

Additional water samples at a frequency of 5% of the samples were not collected for chemistry laboratory QC.

4.0 TESTING RESULTS

The test results for the five range-finding tests are presented in Section 4.1, and the test results from the temperature tests are presented in Section 4.2.

4.1 RANGE-FINDING TESTS

This section presents the test results and water quality conditions documented during the range-finding test with the five chemicals. Temperature, dissolved oxygen, and pH were measured daily in all concentrations. Conductivity, hardness, and alkalinity were measured daily in the control and highest concentration.

4.1.1 Copper

The 96-hour range-finding test with copper was initiated November 9, 2006, and terminated November 13, 2006. The daily survival rates documented throughout the test and the nominal and mean measured chemical concentrations are presented in Table 4-1. The test met the acceptability criterion of \geq 90 percent survival in the control. The concentrations of copper measured throughout the test are presented in Table 4-2; water quality conditions are summarized in Table 4-3.

Table 4-1. Daily survival of ammocoetes and chemical concentrations of copper

Concentr	Concentration (µg/L)		Number of Surviving Ammocoetes			s	
Nominal	Measured Mean ± SD	0 hour	24 hours	48 hours	72 hours	96 hours	Percent Survival
0 (control)	6.88 ± 1.69	5	5	5	5	5	100
1	7.48 ± 1.73	5	5	5	5	5	100
10	14.6 ± 3.42	5	5	5	5	5	100
100	84.9 ± 6.83	5	5	5	5	2	40
1,000	$1,020 \pm 59$	5	0	0	0	0	0

SD = standard deviation

Table 4-2. Copper concentrations throughout the range-finding test

Nominal	Measured Concentration (μg/L)							
Concentration (µg/L)	0 hour	48 hours – Old Solution	48 hours – New Solution	96 hours				
0 (control)	8.49	8.17	5.20	5.64				
1	9.81	7.62	6.71	5.76				
10	19.1	11.7	15.4	12.2				
100	93.9	80.0	90.6	80.0 ^a				
1,000	1,070 ^a	927	1,050	999				

^a Average including a duplicate.

Table 4-3. Water quality conditions during range-finding test with copper

Parameter	Unit	Mean ± SD		
Temperature	° C	12.3 ± 0.2		
Dissolved oxygen	mg/L	10.5 ± 0.2		
рН	unitless	7.3 ± 0.2		
Conductivity	μmhos/cm	113 ± 4		
Hardness	mg/L as CaCO ₃	51 ± 0		
Alkalinity	mg/L as CaCO ₃	40 ± 0		

CaCO₃ – calcium carbonate

SD – standard deviation

4.1.2 Aniline

The 96-hour range-finding test with aniline was initiated November 9, 2006, and terminated November 13, 2006. The daily survival rate documented throughout the test and the nominal and mean measured chemical concentrations are presented in Table 4-4. The test met the acceptability criterion of \geq 90 percent survival in the control. The concentrations of aniline measured throughout the test are presented in Table 4-5; water quality conditions are summarized in Table 4-6.

Table 4-4. Daily survival of ammocoetes and chemical concentrations of aniline

Concenti	ration (mg/L)	Number of Surviving Ammocoetes					
Nominal	Measured Mean ± SD	0 Hour	24 Hours	48 Hours	72 Hours	96 Hours	Percent Survival
0 (control)	0.017 ± 0.019	5	5	5	5	5	100
1.0	0.795 ± 0.128	5	5	5	5	5	100
10	8.23 ± 0.150	5	5	5	5	5	100
100	91.3 ± 16.5	5	5	5	5	5	100
1,000	$1,087 \pm 103$	5	5	2	2	0	0

SD – standard deviation

Table 4-5. Aniline concentrations throughout the range-finding test

	Measured Concentration							
Nominal	(mg/L)							
Concentration (mg/L)	0 Hour	48 Hours – Old Solution	48 Hours – New Solution	96 Hours				
0 (control)	0.002 J	0.044	5.8 J	15 J				
1.0	0.61	0.81	0.89	0.87				
10	8.3	8.3	8.3	8.0				
100	100	75	110	80				
1,000	1,100	950	1,200	1,100				

J – estimated value

Parameter Unit Mean ± SD °C 12.6 ± 0.2 Temperature Dissolved oxygen 10.3 ± 0.2 mg/L рН unitless 7.4 ± 0.1 Conductivity µmhos/cm 120 ± 5 mg/L as CaCO₃ Hardness 51 ± 0 Alkalinity mg/L as CaCO₃ 40 ± 0 and 447 ± 12^{a}

Table 4-6. Water quality conditions during range-finding test with aniline

CaCO₃ – calcium carbonate

SD - standard deviation

4.1.3 Pentachlorophenol

The 96-hour range-finding test with pentachlorophenol was initiated November 9, 2006, and terminated November 13, 2006. The daily survival rate documentd throughout the test and the nominal and mean measured chemical concentrations are presented in Table 4-7. The test met the acceptability criterion of \geq 90 percent survival in the control. The concentrations of pentachlorophenol measured throughout the test are presented in Table 4-8; water quality conditions are summarized in Table 4-9.

Table 4-7. Daily survival of ammocoetes and chemical concentrations of pentachlorophenol

Concentration (µg/L)		Number of Surviving Ammocoetes					
Nominal	Measured Mean ± SD	0 Hour	24 Hours	48 Hours	72 Hours	96 Hours	Percent Survival
0 (control)	0.13 ± 0.00	5	5	5	5	5	100
4	2.3 ± 0.57	5	5	5	5	5	100
40	18 ± 0.50	5	5	5	5	5	100
400	210 ± 0.41	5	0	0	0	0	0
4,000	$2,075 \pm 320$	5	0	0	0	0	0

SD – standard deviation

^a Alkalinity was 40 mg/L in the control and 447 mg/L in the highest concentration.

Table 4-8. Pentachlorophenol concentrations throughout the range-finding test

Nominal	Measured Concentration (μg/L)						
Concentration (µg/L)	0 Hour	48 Hours – Old Solution	48 Hours – New Solution	96 Hours			
0 (control)	0.13 U	0.13 U	0.13 U	0.13 U			
4	3	1.6	2.3	2.2			
40	19	18	18	18			
400	240	230	220	150			
4,000	2,400	2,300	1,800	1,800			

U – not detected

Table 4-9. Water quality conditions during range-finding test with pentachlorophenol

Parameter	Unit	Mean ± SD		
Temperature	°C	12.3 ± 0.2		
Dissolved oxygen	mg/L	10.4 ± 0.1		
pН	unitless	7.3 ± 0.2		
Conductivity	μmhos/cm	117 ± 5		
Hardness	mg/L as CaCO ₃	51 ± 0		
Alkalinity	mg/L as CaCO ₃	40 ± 0		

CaCO₃ – calcium carbonate

SD – standard deviation

4.1.4 Lindane

The 96-hour range-finding test with lindane was initiated November 9, 2006, and terminated November 13, 2006. The daily survival rate documented throughout the test and the nominal and mean measured chemical concentrations are presented in Table 4-10. The test met the acceptability criterion of \geq 90 percent survival in the control. The concentrations of lindane measured throughout the test are presented in Table 4-11; water quality conditions are summarized in Table 4-12.

Table 4-10. Daily survival of ammocoetes and chemical concentrations of lindane

Concent	Number of Surviving Ammocoetes						
Nominal	Measured Mean ± SD	0 Hour	24 Hours	48 Hours	72 Hours	96 Hours	Percent Survival
0 (control)	0.74 ± 0.51	5	5	5	5	5	100
8	4.6 ± 1.5	5	5	5	5	5	100
80	36 ± 16	5	5	5	5	5	100
800	345 ± 189	5	5	5	5	5	100
8,000	$3,215 \pm 2,002$	5	0	0	0	0	0

SD - standard deviation

Nominal	Measured Concentration (µg/L)							
Concentration (µg/L)	0 Hour	48 Hours – Old Solution	48 Hours – New Solution	96 Hours				
0 (control)	1.3	0.81	0.053	0.78 J				
8	5.3	2.8	6.1	4.0				
80	47	17	50	28				
800	430	220	570	160				
8,000	4,400	260	4,500	3,700				

Table 4-11. Chemical concentrations of lindane throughout the range-finding test

Table 4-12. Water quality conditions during range-finding test with lindane

Parameter	Unit	Mean ± SD		
Temperature	°C	12.3 ± 0.2		
Dissolved oxygen	mg/L	10.3 ± 0.2		
pН	unitless	7.4 ± 0.1		
Conductivity	μmhos/cm	117 ± 3		
Hardness	mg/L as CaCO ₃	51 ± 0		
Alkalinity	mg/L as CaCO ₃	40 ± 0		

CaCO₃ – calcium carbonate

SD – standard deviation

4.1.5 Diazinon

The 96-hour range-finding test with diazinon was initiated November 16, 2006, and terminated November 20, 2006. The daily survival rate documented throughout the test and the nominal and mean measured chemical concentrations are presented in Table 4-13. The test met the acceptability criterion of \geq 90 percent survival in the control. The concentrations of diazinon measured throughout the test are presented in Table 4-14; water quality conditions are summarized in Table 4-15.

Table 4-13. Daily survival of ammocoetes and chemical concentrations of diazinon

Concentration (µg/L)		N					
Nominal	Measured Mean ± SD	0 Hour	24 Hours	48 Hours	72 Hours	96 Hours	Percent Survival
0 (control)	2.5 ± 1.7	5	5	5	5	5	100
40	23 ± 16	5	5	5	5	5	100
400	190 ± 70	5	5	5	5	5	100
4,000	$1,518 \pm 825$	5	5	5	5	5	100
40,000	$13,175 \pm 5,960$	5	5	0	0	0	0

SD - standard deviation

J – estimated value

400

4,000

40,000

200

1,200

10,000

Measured Concentration $(\mu g/L)$ Nominal Concentration 48 Hours -48 Hours -(µg/L) 0 Hour **Old Solution New Solution** 96 Hours 0 (control) 4.5 2.6 0.31 2.6 40 29 6.2 41 14

270

2,500

20,000

Table 4-14. Chemical concentrations of diazinon throughout the range-finding test

Table 4-15. Water quality conditions during range-finding test with diazinon

100

570

6,700

Parameter	Unit	Mean ± SD
Temperature	°C	11.9 ± 0.1
Dissolved oxygen	mg/L	10.5 ± 0.1
рН	unitless	7.2 ± 0.1
Conductivity	μmhos/cm	119 ± 4
Hardness	mg/L as CaCO ₃	51 ± 0
Alkalinity	mg/L as CaCO ₃	32 ± 4

CaCO₃ – calcium carbonate

SD – standard deviation

4.2 TEMPERATURE TESTS

This section presents the test results and water quality conditions taken during the two temperature tests. Temperature, dissolved oxygen, and pH were measured daily in all concentrations. Conductivity, hardness, and alkalinity were measured daily in the control and highest concentration.

4.2.1 Temperature 12°C versus 17°C

190

1,800

16,000

The 96-hour temperature test was initiated December 1, 2006, and terminated December 5, 2006. The daily survival rate documented throughout the test is presented in Table 4-16. The test met the acceptability criterion of \geq 90 percent survival in the control. The water quality conditions are summarized in Table 4-17.

Percent Survival Number of Surviving Ammocoetes Temperatur e (° C) **Replicate** Hour Hours Hours Hours Hours Replicate Mean 12° (control) 17°

Table 4-16. Daily survival of ammocoetes at 12° and 17° C

Table 4-17. Water quality conditions during the 12° versus 17° C temperature test

Parameter	Unit	12°C Mean ± SD	17°C Mean ± SD
Temperature	°C	12.3 ± 0.2	16.9 ± 0.4
Dissolved oxygen	mg/L	10.7 ± 0.4	9.1 ± 0.3
рН	unitless	7.2 ± 0.3	7.1 ± 0.2
Conductivity	μmhos/cm	123 ± 4	134 ± 7
Hardness	mg/L as CaCO ₃	51 ± 0	51 ± 0
Alkalinity	mg/L as CaCO ₃	30 ± 0	30 ± 0

CaCO₃ – calcium carbonate

SD – standard deviation

4.2.2 Temperature 12°C versus 22°C

The 96-hour temperature test was initiated December 8, 2006, and terminated December 12, 2006. The daily survival rate documented throughout the test is presented in Table 4-18. The test met the acceptability criterion of \geq 90 percent survival in the control. The water quality conditions are summarized in Table 4-19.

Table 4-18. Daily survival of ammocoetes at 12° and 22° C

		Nι	ımber of S	Surviving .	Ammocoe	tes	Percent Su	ırvival
Temperatur e (°C)	Replicate	0 Hour	24 Hours	48 Hours	72 Hours	96 Hours	Replicate	Mean
12° (control)	1	5	5	5	5	5	100	
	2	5	5	5	5	5	100	100
	3	5	5	5	5	5	100	100
	4	5	5	5	5	5	100	

Table 4-18. Daily survival of ammocoetes at 12° and 22° C

		Nι	ımber of S	Surviving A	Ammocoe	tes	Percent Su	ırvival
Temperatur e (°C)	Replicate	0 Hour	24 Hours	48 Hours	72 Hours	96 Hours	Replicate	Mean
22°	1	5	5	5	5	5	100	
	2	5	5	5	5	4	80	95
	3	5	5	5	5	5	100	93
	4	5	5	5	5	5	100	

Table 4-19. Water quality conditions during the 12° versus 17° C temperature test

		Tempera	ture Test
Parameter	Unit	12° C Mean ± SD	22° C Mean ± SD
Temperature	° C	12.2 ± 0.3	22.3 ± 0.5
Dissolved oxygen	mg/L	10.5 ± 0.4	8.3 ± 0.3
pН	unitless	7.1 ± 0.2	7.2 ± 0.2
Conductivity	μmhos/cm	120 ± 8	146 ± 9
Hardness	mg/L as CaCO ₃	51 ± 0	51 ± 0
Alkalinity	mg/L as CaCO ₃	33 ± 6	37 ± 6

CaCO₃ – calcium carbonate

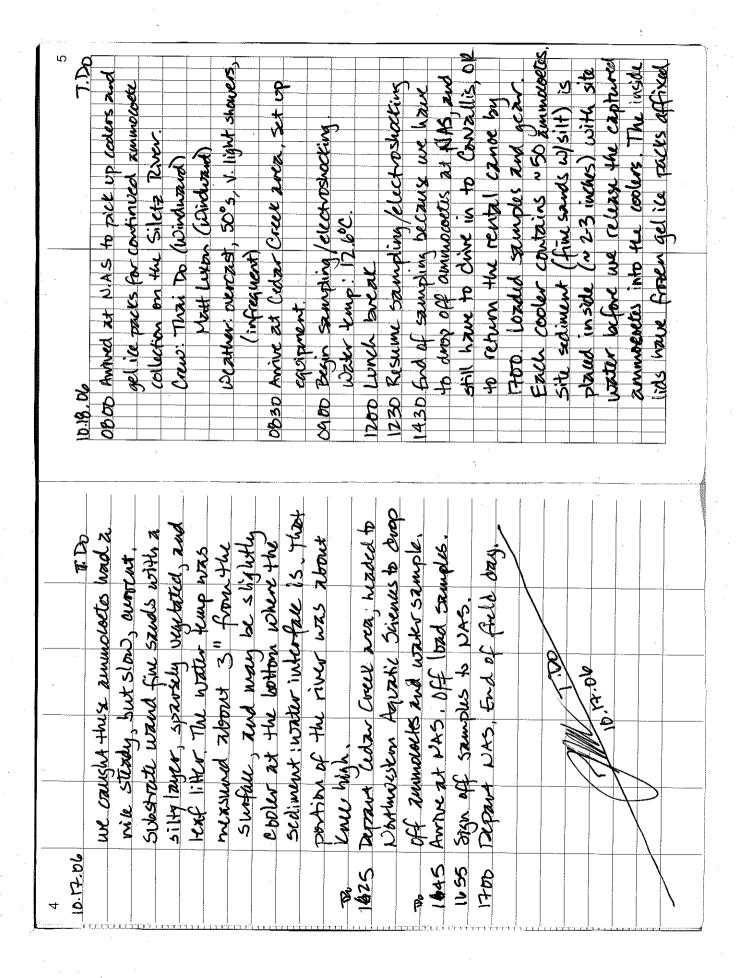
SD - standard deviation

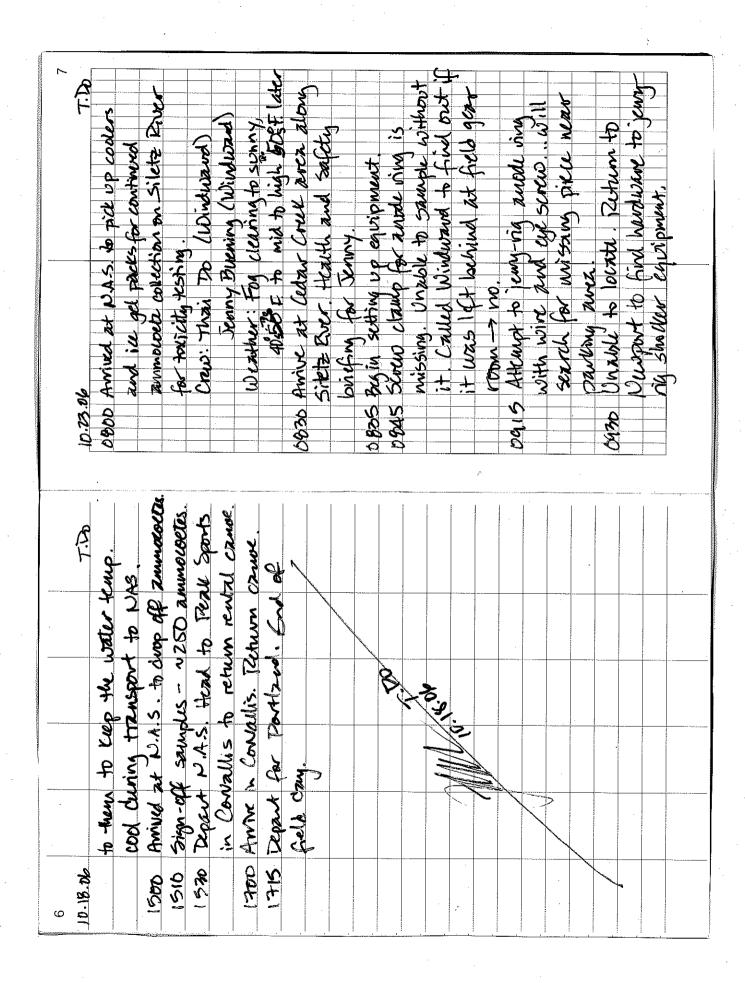
5.0 CONCLUSIONS

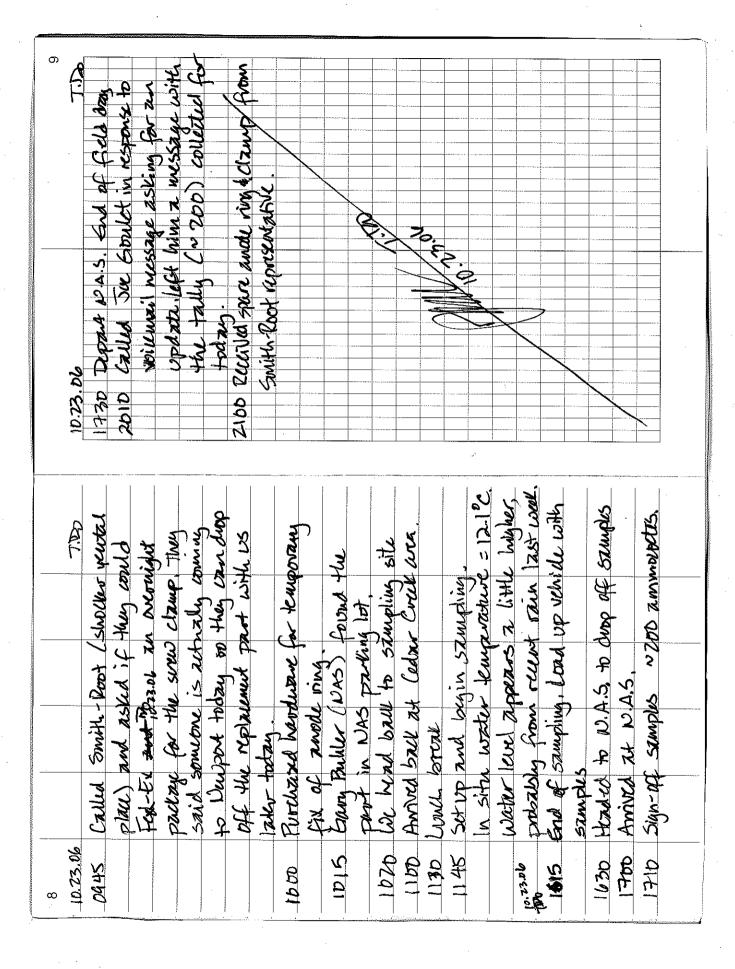
The specific objectives of the Phase 1 lamprey ammocoete collection and testing effort stated in Section 1.1 were all met with two exceptions. A range-finding test with naphthalene could not be performed using the static renewal method because of the volatility of the chemical. Therefore, the range-finding test with naphthalene was delayed until Phase 2 testing when it will be performed as a flow-through test. Similarly, the development of a proper flow-through exposure system was delayed until Phase 2.

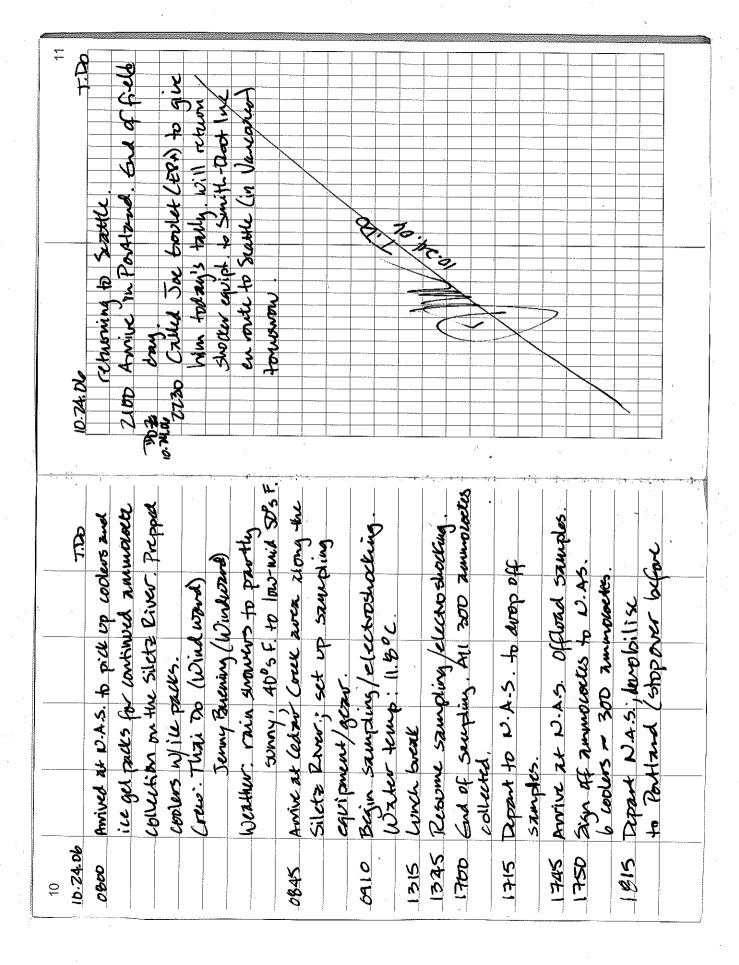
6.0 REFERENCES

ASTM. 1996. Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. E729-96. American Society for Testing and Materials, Philadelphia, PA.


EPA. 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth edition. EPA-821-R-02-012. Office of Water, US Environmental Protection Agency, Washington, DC.


EPA. 2006. Letter to Lower Willamette Group from C. Humphrey and E. Blischke dated August 29, 2006 regarding Portland Harbor RI/FS round 3 data gaps – lamprey and sturgeon, with attachment titled "Objective statements and risk hypotheses for Pacific lamprey toxicity testing." US Environmental Protection Agency Region 10, Oregon Operations Office, Portland, OR.


Integral, Windward, Kennedy/Jenks, Anchor, Groundwater Solutions. 2004. Portland Harbor RI/FS programmatic work plan. Prepared for Lower Willamette Group. Integral Consulting, Inc., Mercer Island, WA; Windward Environmental LLC, Seattle, WA; Kennedy/Jenks Consultants, Portland, OR; Anchor Environmental, LLC, Seattle, WA; Groundwater Solutions, Inc., Portland, OR.


APPENDIX A. FIELD COLLECTION LOGBOOKS AND CHAIN-OF-CUSTODY FORMS

2		3
10.17.06	27.7	D.17.06
0815	Arrive at strom Paul Boat vaup.	0900 Unsuccessful upstream of boat lawar
777773776	weather: partly cloudy, cleaning	So we will head down strain
	50°s waterming to 1000 60°s (after.	and will shock any areas that
	Crew: Thai to (Windwand Env. LL)	
	Mart Liver (Windward Env. CLC)	1345 We canced downstraw about two
0630	Sct up: Faunch cande, review backpack	wills and were unsuccessful at
	electroshocking encount	even lovation we tried we
	We decided that before we begin,	returned to the boat bushesat
-	we will make some the settings	Stron Bank to talk a while lorak
	Ave covect and will pentam some	1415 Deard Shown Part bounce.
	-	1
	≺	anca advised by star van de
	not appropriate so we will reset them.	Wedning \$5116 t2), a linely sumplecte
P () ()	Baukpack electroshocker is set to dualphe	nido arce.
,	Lethin 1	1430 Anive at ledar Creek area, We
	3 pulses /suc	1
	125 V 25% but cycle	of the dan
	Ethin 2	1620 This Luna was sweesful. We
	20pules	epitated 50 acceptant sized
	125V 25% doth eyell	(25-9 cm) summo coetts, We
0845	Depart wat raunch and waded	collected a ray of site wasker for
-	1 to 1804	the lab to test for handmiss.
	beach anex with habitati depositional	The in situ temperature was
	aweas with a nile flow / aument.	mexsured at 12 90 C. The sure
*		

CT COURT
oţ

CHAIN-OF-CUSTODY/TEST REQUEST FORM

Me 2409

Project/Client Na	ume:	Project/Client Name: UNG KA LAM Prey QUAMOLOCE	motoete	ŕ	Ship	Ship to:	D.A.S.			
Project Number:	ber:				<	Attn:	Gang Buhler	hler	Shipp	Shipping Date: 16.17.06
Contact Name:		Helle Andersen			Shipper:)		- Airbill	Airbill Number:
Samplec		Sampled By: TDo, M LUXEN		Form	Form filled out by:	Discourse Price Pr	8		- Turnarour -	Turnaround requested:
						Test(s) Re	equested (chec	Test(s) Requested (check test(s) required)		
Sample Collection Date (m/d/y)	Time	Sample Identification	Volume of Sample / # of Containers	Matrix	* 'YQ1	STINDON				Comments / Instructions [Jar tag number(s)]
10-CF-06 11055	1688	Siletz R. (Cedu Cx.)	58	ammouseles	×					-
10. F.20 1655	655		1 Jungerya	naten		×				water temp: 12.9°C in
				ξ.		-	,			•
										/
									/	/
			,						/	
								\		
		Total Number of Containers		Purchase Order / Statement of Work #	/ Stateme	nt of Worl	k #			
1) Released by:		1) Rec'd by:	1	2	2) Released by:	by:		2)	2) Rec'd by:	
1/2		,	N. N. Oak	L						

Date/fine: 10 17 06/1655

WINDWARD

Signature: Company Windward LLC

200 West Mercer Street Suite 401 Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343

			100
٠	35 m 15 m	HANDAGE N	1.4
•	89. S934		
	34.00	12.5	
וע		(265tt	
,	2003200	5 4 5 4	
וע	4 WEAK	100	* -
-	ALC: NO.		
13	CANAL STATE	295000	
۷.	S. 25-25 A.M.		
2	807 N 200	907775	
1			
= 1		N. 35 A	
3	1.0		
ň		1.000	
		7	
=		100	
51	1.5	3.3 B	
5	100	1000000	
		1.00 AV. a	
ر د		A double is	
`	1 100		
	建大学所	经合金 计图	
5	Strategic	1.25	1.1
ا پت		20 00	5.154.
ŭ	4.1		39.50
- 1	34		
>	17	15 (4) (24)	J. 18
١.	l a	100	Salar Co
ď	· •	 	(A)
الّ	· >	· · · = ·	
_	> :	_ Q ``	· >
≥.	>	recei	
2	<u> </u>	~ ~ `	े क
_	ㅂ		∵ ŏ
⋾	তে		- 5
U	19-19 A	ധ	a)
-	200		0
¥	200 Per 200		- U
=	10		~ ~
=		feedback or 1	
	100000000000000000000000000000000000000		
=	2000	[2:45]	1 1
5	200		
5			
5			
5			
50 ec			
o se co			
to be completed by Laboratory upon sample receipe.			
10 per co			
10 De CO			
00 00 00			
100 per col			
lo pe co			
lo pe col			
10 ac co			
10 De CO			
10.000			
10.00 01			
100 ac 01			
100 ag 01			
10 pg 01			
10 pg 01			
10 pg 01		10	
10.0e.co		eipt:	
10.0e.co		celpt:	ö
10.00		ecelpt:	ı'e:
10.00		teceipt:	wre:
10.000	ü	n receipt:	ature:
10.000	pt::	on receipt:	erature:
10.000	ejpt::	pon receipt:	oerature:
10.000	ceipt::	upon receipt:	nperature:
10 ag 01	eceipt::	n'upon receipt:	mperature:
10 ag 01	receipt::	on upon receipt:	temperature:
10 ag 01	of receipt::	tion upon receipt:	r temperature:
100 ac 01	of receipt::	dition upon receipt:	ler temperature:
100 ac 01	te of receipt::	ndition upon receipt:	oler temperature:
10 ac 01	ate of receipt::	ondition upon receipt:	ooler temperature:
10 ac 01	Date of receipt::	Condition upon receipt:	Cooler temperature:
10 ac co	Date of receipt::	Condition upon receipt:	Cooler temperature:

Company:

Print name:

Signature:

Company: Date/Time:

Date/Time: 7-06 /1655

Company: UKS

Date/Time:

^{*} Distribution: White copies accompany shipment; yellow retained by consignor.

οť

0

CHAIN-OF-CUSTODY/TEST REQUEST FORM		Nº 24
Project/Client Name: (M)G EDA - 18 MD RY any MINOULE (for icity) Ship to: N. A.S.		
Project Number:	Shipping Date: 10.18.0	10.18.0
	Airbill Number:	
Sampled By: T. Dv., M. LUKON. Form filled out by: T. Dv.	Turnaround requested:	- i:
		!

						Tect(c) Ren	Testis) Repulseted (chark testis) vanimal	ch toetfe) voc	Con			1
								(6)	(2)			
Sample Collection Date (m/d/y) Time	Sample Identification		Volume of Sample / # of Containers	Matríx	.X <i>Q</i> /						Comments / Instructions	
00:51 90:81:01	o wo sletz R. (ledur		De & Dudon ammasett	ammasete	N						C Mater a 150 ammodeles	se Co.
			NZO AMERICA	T.								j S
								\				
				1								
	1											
	, page											
						`						
									-			
	Total Number of Containers	Containers		Purchase Order / Statement of Work #	/ Statement	of Work #	#					
1) Released by: 13147 L	R	1) Rec'd by:	,	.,	2) Released by:				2) Rec'd by:	l by:		
Print name: The	R	(grazy	Jest of the	The second secon	Print name:					'		7
Signature:		Company:	1 ×		Signature:				Company:	pany:		
Company; WINDAM	WINDHAD ENV UC	۷			Company:							
Date/fime: 10 -18-06/15: 16	1/15:16	Date/Time: 1	Date/Time: 10,1 8.0 10 /15.1	0):	Date/Time:				Date/	Date/Time:	-	
Company of the compan												

* Distribution: White copies accompany shipment; yellow retained by consignor.

200 West Mercer Street Suite 401 Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343

Laboratory W.O. #:	e of receipt:	eived by:
Labo	<u>IIII</u>	Reco
aptr	pon receipt:	oerature:
of rece	dition u	oler temperatu

Project/Client Name: LWG EPP- AWARY ANNWELE (FOXICITY)

Project Number: Contact Name:

CHAIN-OF-CUSTODY/TEST REQUEST FORM

2408 Q1

Airbill Number: Shipping Date:

Attn: Care Bar 7 hand delid

Shipper:

Ship to: N, A.S.

Turnaround requested:			Comments / Instructions [Jar tag number(s)]	701 C1 05 11/24 14/13 W.													and the control of th		
Turnarou	test(s) required)									/	,			2) Rec'd by:		Company:	-	Date/Fime:	
Form filled out by:	Test(s) Requested (check test(s) required)	452	,Xot	\ <u></u>									Purchase Order / Statement of Work #	2) Released by:	Print name:	Signature:	Company:	Date/Time:	
Form			Matrix	Simmonope		/	/	_					Purchase Order / 3	2)				2141/	
		Volume of	Sample / # óf Containers	4 coolers	~200 d.							***		1 1 0	Behl		A.5.		
) BUENING			Sample Identification	LW3-SIMP DIEN	(colouck.)		,						of Containers	1) Rec'd by:	Cay		C. A.S.	Date/	retained by consigno
			Sample Ic	LW3-5il	(U								Total Number of Containers		0	_	Company (2) WY WAD UN LL	Date/Time: 10.23.06 / 1710	y shipment; yellow
Sampled by: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Time	0261										04 14H	14B1 PO		21POWA	90.52.06	copies accompan
aldillac		Sample	Collection Date (m/d/y)	10.22.01										1) Released by: THA-1	Print name: + (+ 6)	Signature:	Company:	Date/Time: 1 (* Distribution: White copies accompany shipment; yellow retained by consignor.

200 West Mercer Street Tel: (206) 378-1364 Fax: (206) 217-9343 Seattle, WA 98119 Suite 401

|--|

CHAIN-OF-CUSTODY/TEST REQUEST FORM

244 01 Turnaround requested: Shipping Date: Airbill Number: Attn: Gany Buller Ship to: NAS hand Form filled out by: 7. B Shipper: Project/Client Name: LINGS ELA - Jampacy ammy cost (10x1/14) J BUGAING Contact Name: Helle Andersen Project Number: 06.28.04.45 Sampled By: The ot

<u>.</u>		Comments / Instructions [Jar tag number(s)]	In situa teung 11.8°E					3					e experimental exp		And the second s	à		
ed)												2) Rec'd by:		Company:	-	Date/Time:		
Test(s) Requested (check test(s) required)	4524	`x4	×							,	Purchase Order / Statement of Work #	2) Released by:	Print name:	Signature:	Сотрапу:	Detailine	Date/ Hine:	
		Matrix	annmodetes	,	/						Purchase Order /	1, (2)	Mr.				8	
		Volume of Sample / # of Containers	le coolees	~300 cf.								0	Mary 18ch		·5,4-2		Date/Time: 17,14,17,1750	1 / 201 / 10
		Sample Identification	132-416 RIVER	(Firlay Creek worth)							Total Number of Containers	1) Rec'd by:		Company:		Company: ASI P VANA P ASS AS		
,		Time					,					14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15		M_{i}	Ora 2. 12. 1.	コンシング	190.42 a	•
		Sample Collection Date (m/d/v)	10.74.06 1250							,		1) Delegged by. THILL	Delet some to	Cianolius.	Signature	Company: 18	Date/Time: 10,74,06/17-50	

Wind Ward

200 West Mercer Street Tel: (206) 378-1364 Fax: (206) 217-9343 Seattle, WA 98119 Suite 401

[2000	**************************************	Mg est
receipt			
ample			
s uodn			
ratory	#:		
by Labo	ory W.O.	f receipt:	d by:
pleted	Laborato	Time of	Receive
To be completed by Laboratory upon sample receipt:			
10			
	1		
		æipt:	7.
	ceipt::	upon rec	nperature
	ate of re	ondition	Cooler tempe
	10.04		

 $[\]star$ Distribution. White copies accompany shipment; yellow retained by consignor.

APPENDIX B. TOXICITY TESTING REPORT

TOXICITY TEST REPORT

TEST IDENTIFICATION

Test Nos.: 686-31 through 37

<u>Title</u>: Lamprey (*Lampetra* sp.) ammocoete acute, static renewal range-finding toxicity testing with lamprey ammocoetes (*Lampetra* sp.) in support of the Portland Harbor remedial investigation (RI).

Protocol No.: NAS-686-Lamprey-rf, October 11, 2006 draft.

<u>Study Objectives</u>: The study objectives for the laboratory were to: 1) establish proper methods for holding the ammocoetes in the laboratory, including feeding and temperature regimens; 2) establish the proper exposure system, including size of exposure chambers, flow rate, and feeding regimen; and 3) perform range-finding toxicity tests with the following six chemicals: copper, aniline, pentachlorophenol, naphthalene, diazinon, and lindane. After the study was initiated, naphthalene was dropped from the range-finding testing and testing at two higher temperatures was added.

STUDY MANAGEMENT

Study Sponsor: Windward Environmental, Inc., 200 West Mercer Street, Suite 401, Seattle, WA 98119.

Sponsor's Study Monitor: Ms. Helle Andersen

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, OR 97365.

Test Location: Newport Laboratory.

Laboratory's Study Personnel: Richard S. Caldwell, Ph.D., G.A. Buhler, B.S., Proj. Man./Study Dir.; L.K. Nemeth, B.A., M.B.A., Acting Lab Director and QA Officer; G.J. Irissarri, B.S., Aq. Toxicol.; G. Hutchinson, B.S., Tech. Study Schedule: The study began on September 28, 2006 with preparations to receive and hold lamprey in the laboratory. The study schedule required holding the lamprey for two to three weeks after receipt in order to determine whether lamprey ammocoetes could be held successfully in the laboratory. After two to three weeks of holding, four chemicals (aniline, copper, pentachlorophenol, and lindane) were tested on 11-9-06 in 96-hr static renewal tests. Diazinon was tested on 11-16-06. Naphthalene was dropped from the range-finding phase of the study due to the difficulty of keeping it in solution. After the chemical testing started, two more tests were requested to assess the ability of lamprey to acclimate to and survive in water-only tests at higher temperatures (17°C and 22°C). The temperature testing was conducted with remaining lamprey ammocoetes following the successful completion of chemical testing. On 11-21-06, at the end of all chemical testing, remaining organisms were fed, then ammocoetes were separated into different temperature-controlled rooms to acclimate to temperatures for the 96-hr temperature tests which were initiated on 12-1-06 (17°C) and 12-8-06 (22°C). The final test ended on 12-12-06.

<u>Disposition of Study Records</u>: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

Good Laboratory Practices: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

Statement of Quality Assurance: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Description: Chemicals tested included aniline (Fisher Scientific Lot #062904; purity: 99.9% assay), copper as copper sulfate (Argent Lot No. 0195; purity: minimum 99%), pentachlorophenol (Eastman Organic Chemicals), lindane (Aldrich batch # 07325DD; purity: 97%), and diazinon (Chem Service Lot # 362-71A; purity: 98.2%). Preparation of Working Stock Solution and Test Concentrations: Stock solutions of aniline, pentachlorophenol, lindane, and diazinon, and were prepared by weighing or, in the case of aniline, measuring volumetrically, enough of the chemical to exceed either the saturation levels in water or an amount to exceed the estimated aqueous toxicity concentrations, and adding the chemicals to from 1L to 4L of NAS tap water in clean, acetone-rinsed brown glass bottles fitted with Teflon® caps. Bottles were capped and the contents slowly stirred on a magnetic stirrer at room temperature for ca. 20 hours. Target aqueous concentrations for each

chemical were: lindane, 8.0 mg/L; pentachlorophenol, 40 mg/mL; diazinon, 40 mg/L; and aniline, 1000 mg/L. The copper stock solution was a 1 mg/mL stock prepared on 10-27-05.

DILUTION WATER

Source: Dechlorinated municipal tap water from the City of Newport.

<u>Dates of Preparation</u>: A tank of dilution water was prepared prior to receipt of lampreys in the laboratory, topped off daily as needed, and constantly aerated. Water was removed for testing, or for aerated temperature acclimation prior to testing, on 11-9-06, 11-16-06, 11-30-06 and 12-7-06.

Water Quality: Ranges for parameters were: conductivity 110-130 μ mhos/cm and alkalinity 30-40 mg/L as CaCO₃. In all batches of dilution water hardness was 51 mg/L as CaCO₃, and pH was 7.2. All total chlorine measurements were <0.02 mg/L.

Pretreatment: Dechlorinated, aerated ≥24 hr.

TEST ORGANISMS

Species: Lamprey, Lampetra sp.

Age: ammocoetes

<u>Size</u>: An initial representative subsample of six lampreys was measured after lab receipt of all animals. Pretest lamprey ammocoetes ranged from 28 to 84 mm in length and 0.04 to 0.78 g in weight. At the end of each test, lengths and weights were measured on all control animals and the overall means were calculated: average length, 67 ± 11 mm; average weight, 0.45 ± 0.20 g.

Source: Cedar Creek, Siletz River, Oregon. Organisms were collected by Windward staff and delivered to the laboratory.

Acclimation: Lamprey ammocoetes were received on 10-17-06, 10-18-06, 10-23-06, and 10-24-06. In situ water temperatures recorded on chain-of-custodies were 12.9°C, 12.1 °C, and 11.8°C. Average water quality parameters measured in the receiving water at the laboratory were: Temperature, 12.0 ± 1.3 °C (range 10.6 - 13.6); dissolved oxygen, 8.8 ± 0.6 mg/L (range 8.2 - 9.6); pH, 6.0 ± 0.6 (range 5.3 - 6.8); conductivity, 96 ± 39 µmhos/cm (range 62 - 150); hardness, 31 ± 11 mg/L as CaCO₃ (range 26 - 51); and alkalinity, 38 ± 35 mg/L as CaCO₃ (range 20 - 90).

Animals were placed in 10-gallon tanks under flow-through conditions (~35 mL/minute, or ~2 volume changes per day, with one additional daily siphon and replacement of 2/3 volume of each tank). Approximately 50 lampreys were placed in each tank. Tanks contained 2-3 inches of sediment (Sandtastic Play Sand, Waupaca Materials) covered with 26L of test water and supplied with aeration. Normal behavior for lamprey ammocoetes is to immediately bury in sediment and remain there. If any are observed swimming around and not burying, that indicates some sort of stress. A total of six lampreys were found dead on the sediment surface within the first few days after receipt of animals, probably from being damaged during field sampling. Four lampreys from the 10/18/06 batch died and two from the 10/24/06 batch died. None of these animals were able to bury in the sediment. All other lampreys buried into the sediment and were not observed swimming in the water column.

Since lampreys were to be held short-term (a few weeks), they were not fed during this time. Water quality conditions for the three weeks prior to initiating the first tests (686-31 through -34) averaged: Temperature, 12.3 ± 0.5 °C; dissolved oxygen, 10.9 ± 0.6 mg/L; pH, 7.6 ± 0.4 ; conductivity, 129 ± 5 µmhos/cm; hardness, 48 ± 4 mg/L as CaCO₃; and alkalinity, 44 ± 9 mg/L as CaCO₃. Further acclimation data for individual tests is summarized in Appendix II. Approximately four weeks after animal receipt, remaining lampreys were fed a yeast slurry (2 g yeast in 400 mL tap water blended for ~ 1 minute). The flow was turned off and 50 mL of slurry was fed to each tank. Flow was resumed after 24 hours. Lampreys were then further acclimated to remaining test temperatures.

TEST PROCEDURES AND CONDITIONS

<u>Test Chambers</u>: The test chambers were 2.5-gallon glass aquaria, containing 2.8L of test solution each, and were covered with plastic lids.

<u>Test Concentrations</u>: Four test concentrations and a control were used for each test. Test concentrations were determined by 96-hr exposures of a single lamprey to each of a wide range of three to six concentrations for each chemical. Nominal concentrations used for range-finding testing of each chemical were:

Aniline: 1000, 100, 10, 1.0 and 0 mg/L Copper: 1.0, 0.1, 0.01, 0.001, and 0 mg/L Pentachlorophenol: 4.0, 0.4, 0.004, and 0 mg/L Lindane: 8.0, 0.8, 0.08, 0.008, and 0 mg/L Diazinon: 40, 4.0, 0.4, 0.04, and 0 mg/L

Replicates/Treatment: 1 for chemical tests; 4 for temperature tests Organisms/Treatment: 5 for chemical tests; 20 for temperature tests

Loading: 0.38 to 1.05 g/L

Aeration: Yes Feeding: None

<u>Water Volume Changes</u>: For all testing, solutions were renewed at 48 hours with fresh solution. For chemical tests, new stock solutions were started mixing 24 hours prior to renewal.

<u>Effects Criteria</u>: The effect criteria used in the lamprey range-finding toxicity test was mortality, defined as a lack of visible respiratory movement and absence of response to tactile stimulation.

<u>Target Water Quality Conditions</u>: Temperature, 12 ± 1 °C for chemical tests and 12, 17, or 22 ± 1 °C for temperature tests; dissolved oxygen, ≥ 6.0 mg/L.

Photoperiod: 16:8 hr, L:D.

<u>Light Intensity</u>: Light intensity for the tests ranged from 49.5 to 73.0 foot-candles. Measurements are recorded on each test bench sheet.

DATA ANALYSIS METHODS

Percent survival was calculated for each concentration from the raw data. For temperature tests the means were obtained for each treatment. The software employed for these calculations was Microsoft Excel 2000.

CHEMICAL ANALYSES

For the chemical exposure tests, a sample of test solution was taken directly from each test aquaria at 0-, 48- (both old and new solutions) and 96-hours. Samples were stored at 4°C in the dark prior to shipment to Columbia Analytical Services. Shipment of samples was generally accomplished the next work day after sampling.

PROTOCOL DEVIATIONS

Lamprey ammocoetes were not fed during the first month of holding on the recommendation of William Swink, M.S., Research Fishery Biologist with the USGS at Hammond Bay Biological Station. Mr. Swink has extensive experience working with sea lamprey, including culture of larval lampreys; effects of density on growth of larvae; and survival, growth, and feeding of newly metamorphosed lampreys. After chemical testing was completed and holding was to continue past the initial planned time, remaining lampreys were fed a yeast slurry based on the methods used by the USGS at Hammond Bay Biological Station.

Dilution water hardness was 51 mg/L as CaCO_3 in all batches of test water used. This is slightly above the water hardness listed in the QAPP (<50 mg/L). Collection site water hardness ranged from 20-51 mg/L.

TEST RESULTS

Water quality conditions measured in test aquaria during the 96-hr toxicity tests are summarized in Appendix II. The temperature specification (12, 17, or 22 ± 1 °C) was met during the study for each temperature regime. Dissolved oxygen remained near saturation throughout the test (range 8.0 - 11.2 mg/L). The pH was within the range of 6.8 to 7.6, and conductivity measurements were within the range of 110 to 160 μ mhos/cm. Hardness remained at 51 mg/L as CaCO₃ in all tests and alkalinity ranged from 30 to 40 mg/L as CaCO₃ in all tests except aniline (40 to 460 mg/L as CaCO₃).

The daily tabulations of the numbers of surviving lamprey ammocoetes in each treatment and treatment replicate are shown in Tables 1-7. Although not required for test acceptability in these research range-finding tests, the 96-hr control survival was 100% for all tests in the study, meeting the standard acute test acceptability criterion of 90%.

Table 1. Survival of	Table 1. Survival of lamprey ammocoetes, exposed for 96 hours to aniline.											
Nominal	_	N	Number of Lamprey Surviving Percent									
Conc. (mg/L)	Replicate	0-hr	24-hr	48-hr	72-hr	96-hr	Survival					
1,000	1	5	5	2	2	0	0.0					
100	1	5 ,	5	5	5	5	100.0					
10	1	5	5	5	5	5	100.0					
1.0	1	5	5	5	5	5	100.0					
0 (control)	1	5	5	5	5	5	100.0					

Table 2. Survival of	Table 2. Survival of lamprey ammocoetes, exposed for 96 hours to copper.										
Nominal	_	N	umber of	ıg	Percent						
Conc. (mg/L)	Replicate	0-hr	24-hr	48-hr	72-hr	96-hr	Survival				
1.0	1	5	0.	0	0	0	0.0				
0.1	1	5 .	5	5	5	2	40.0				
0.01	1	5	5	5	5	5	100.0				
0.001	1	5	5	5	5	5	100.0				
0 (control)	1	5	5	5	5	5	100.0				

Table 3. Survival of	f lamprey amn	ocoetes	, exposed	for 96 h	ours to pe	entachloro	phenol.	
Nominal		N	umber of	Lamprey	Percent			
Conc. (mg/L)	Replicate	0-hr	24-hr	48-hr	72-hr	96-hr	Survival	
4.0	1	5	0	0	0	0	0.0	
0.4	1	5∙	0	0	0	0	0.0	
0.04	1	5	5	5	5	5	100.0	
0.004	1	5	5	5	5	5	100.0	
0 (control)	1	5	5	5	5	5	100.0	

Table 4. Survival o	f lamprey amn	nocoetes	, exposed	for 96 h	ours to li	ndane.						
Nominal	_	Number of Lamprey Surviving Percent										
Conc. (mg/L)	Replicate	0-hr	24-hr	48-hr	72-hr	96-hr	Survival					
8.0	1	5	0	0	0	0	0.0					
0.8	1	5	5	5	5	5	100.0					
0.08	1	5	5	5	5	5	100.0					
0.008	1	5	5	5	5	5	100.0					
0 (control)	1	5	5	5	5	5	100.0					

Table 5. Survival of	f lamprey amn	nocoetes	, exposed	for 96 h	ours to di	azinon.	
Nominal		N	umber of	Lamprey	ıg	Percent	
Conc. (mg/L)	Replicate	0-hr	24-hr	48-hr	72-hr	96-hr	Survival
40	1	5	5	0	0	0	0.0
4.0	1	5	5	5	5	5 .	100.0
0.4	1	5	5	5	5	5	100.0
0.04	1	5	5	5	5	5	100.0
0 (control)	1	5	5	5	5	5	100.0

Table 6. Survival of	f lamprey amn	nocoetes	, exposed	for 96 h	ours to 1'	7°С.		
Temperature		N	lumber of	Lamprey	y Survivii	ng	96-hr %	6 Survival
(°C)	Replicate	0-hr	24-hr	48-hr	72-hr	96-hr	Replicate	Mean
		_	_	_	_	_		
17	1	5	5	5	5	5	100.0	
	2	5	5	5	5	5	100.0	
	3	5	5	5	5	5	100.0	
	4	5	5	5	5	5	100.0	100.0
12	1	5	5	5	5	5	100.0	
(control)	2	5	5	5	5	5	100.0	
(control)	3	5	5	5	5	5	100.0	
	4	5	5	5	5	5	100.0	100.0

Table 7. Survival o	f lamprey amn	10coetes	, exposed	for 96 h	ours to 22	2°C.		
Temperature		N	lumber of	Lamprey	/ Survivi	ng	96-hr %	6 Survival
(°C)	Replicate	0-hr	24-hr	48-hr	72-hr	96-hr	Replicate	Mean
22	1	5	5	5	5	5	100.0	
	2	5	5	5	5	4	80.0	
	3	5	5	5	5	5	100.0	
	4	5	5	5	5	5	100.0	95.0
12	1	5	5	5	5	5	100.0	
(control)	2	5	5	5	5	5	100.0	
, ,	3	5	5	5	5	5	100.0	
	4	5	5	5	5	5	100.0	100.0

STUDY APPROVAL

Project Manager/Study Director Date

Sinda K. New 4 3/21/07

Acting Laboratory Director Date

APPENDIX I PROTOCOL

DRAFT

TEST PROTOCOL

LAMPREY (LAMPETRA sp.) RANGE-FINDING TOXICITY TEST

1. INTRODUCTION

- 1.1 <u>Purpose of Study</u>: The purpose of this test is to perform range finding testing to determine the concentrations of specific chemicals that should be used for definitive testing to determine acute toxicity. The test employs lamprey (*Lampetra* sp.) ammocoetes. This testing is research based rather than for regulatory purposes and changes to procedures may occur as the study develops.
- 1.2 <u>Summary of Method</u>: Juvenile lampreys (ammocoetes) are exposed for 96 hours to a wide range of concentrations of several specific chemicals in order to find the concentrations that should be used for further testing to determine acute toxicity levels. The range-finding tests will be static-renewal. The test chambers are covered glass containers, each holding a volume of solution large enough to prevent loading from exceeding 1.1 g/L. For this range finding one replicate test chamber with five ammocoetes is employed at each of three or more test concentrations. A dilution water control is also run for each test, and a solvent control is also run if a solvent is required for a specific chemical. If there is a surplus of animals available, two replicates per concentration with five animals per replicate may be employed. Mortality is the effect criterion.

STUDY MANAGEMENT

2.1 Sponsor's Name and Address:Windward Environmental LLC200 West Mercer Street, Suite 401Seattle, WA 98119

2.2 Sponsor's Study Monitor: Ms. Helle Andersen

2.3 Name of Testing Laboratory:Northwestern Aquatic Sciences3814 Yaquina Bay Road P.O. Box 1437Newport, OR 97365

2.4 <u>Test Location</u>: Newport Laboratory

2.5 Laboratory's Personnel to be Assigned to the Study:

Study Director: Gary Buhler

Quality Assurance Officer: Linda K. Nemeth Aquatic Toxicologist: Gerald Irissarri Aquatic Toxicologist: Michele Redmond

2.6 <u>Proposed Study Schedule</u>: Range finding tests should begin within two to three weeks of ammocoetes collection. Part of the study is to determine whether lamprey ammocoetes can be held in the laboratory prior to testing.

DRAFT

October 11, 2006

2.7 <u>Good Laboratory Practices</u>: The test is conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations effective December 29, 1983 (40 CFR Part 792).

3. TEST MATERIAL

For this study, six chemicals are to be tested if there are sufficient animals and chemicals can be obtained and put into solutions successfully. Copper, naphthalene, pentachlorophenol, lindane, diazinon, and aniline are the chemicals to be tested. These chemicals were selected to represent a range of toxic mode of actions. The chemicals will be purchased by NAS. If the number of ammocoetes is limited then chemicals will be tested in the order listed above. The nominal concentrations prepared for each chemical by the laboratory will be confirmed by chemicals analyses. Water samples will be collected from the control and each test concentration at test initiation and termination in bottles supplied by Columbia Analytical Services. Samples will be shipped via overnight carrier to CAS within 24 hours of collection.

4. DILUTION WATER

Dilution water is dechlorinated municipal water from the City of Newport.

5. TEST ORGANISMS

- 5.1 Species: Lamprey, Lampetra sp.
- 5.2 <u>Source</u>: Lamprey will be collected from the Siletz River by Windward Environmental and transported to NAS.
- 5.3. Age: ammocoetes (juveniles)
- 5.4 Acclimation and Pretest Observation: After receipt of fish at the laboratory, they will be sorted into holding tanks supplied with ~4-6 cm of fine sand, flowing water (dilution water), and aeration. The flow rate will depend on the number and size of the ammocoetes received. Animals will be held for two three weeks prior to testing. During holding, ammocoetes will be fed yeast and, if necessary, a larval fish food weekly or at a frequency that appears to be appropriate based on observations of laboratory staff. After two weeks of holding, ammocoetes should appear disease-free and unstressed, with fewer than 5% of the organisms dying during the 24 to 48 hours prior to testing. To determine the loading rate and test chamber size, the wet weigh of approximately 10 ammocoetes will be measured before test initiation.

Care must be used to ensure that fish are not subjected to unusual handling or environmental stress either before or during the testing period. Ammocoetes should burrow into the substrate. Fish should be handled only the minimum necessary using suitable dip nets and should not be subjected to more than a 3°C temperature change during any 12-hour period. The dissolved oxygen level must be maintained at a level of 6.0 mg/L or greater. During holding, loading of fish in aquaria should not exceed 10 g/L, and holding water should be replaced at a minimum rate of 2 tank volumes per day. Fish are shielded from any unusual visual stress and treated with a photoperiod of 16 hours light and 8 hours darkness. A daily log of feeding, behavioral observations, mortality, and water quality should be maintained.

October 11, 2006

DRAFT

6. DESCRIPTION OF TEST SYSTEM

- 6.1 Test Chambers and Environmental Control: Test chambers are glass containers capable of holding a volume large enough to prevent loading from exceeding 1.1 g/L. Test chambers should be covered. Test chambers are maintained at constant temperature by partial immersion in a temperature-controlled water bath or by holding in a constant temperature room. The system is maintained in a photoperiod-controlled room or enclosure. Aeration is not required unless dissolved oxygen concentration falls below 6.0 mg/L. Aeration rate should not exceed 100 bubbles/minute. If aeration in required, all containers are aerated by slow bubbling of oil-free compressed air through 1 ml disposable pipets.
- 6.2 Cleaning: All laboratory glassware, including test chambers, is cleaned as described in EPA-821-R-02-012. New glassware and test systems are soaked 15 minutes in tap water and scrubbed with detergent (or cleaned in automatic dishwasher); rinsed twice with tap water; carefully rinsed once with fresh, dilute (10%, V:V) hydrochloric or nitric acid to remove scale, metals, and bases; rinsed twice with deionized water; rinsed once with acetone to remove organic compounds (using a fume hood or canopy); and rinsed three times with deionized water. Test systems and chambers are rinsed again with dilution water just before use.

7. EXPERIMENTAL DESIGN AND TEST PROCEDURES

- 7.1 Experimental Design: The test involves exposure of lamprey ammocoetes to a series of three to five test concentrations and a dilution water control. Exposures are for 96 hours. Each treatment consists of one test chamber each containing five fish. Total randomization is used for the placement of containers in the temperature-controlled room. Test organisms are impartially distributed to the test chambers by adding one to two animals to each chamber and repeating the process until each contains 5 organisms.
- 7.2 <u>Effect Criterion</u>: The effect criterion used in the lamprey bioassay is mortality, defined as a lack of visible respiratory movement and absence of response to tactile stimulation.
- 7.3 Test Conditions: The test temperature employed is $12 \pm 1^{\circ}$ C. The photoperiod is 16 hours of light and 8 hours of darkness. Illumination is supplied by ambient laboratory lighting. The dissolved oxygen concentration in each test container must be greater than 6.0 mg/L throughout the test. Test containers are gently aerated if required to maintain the oxygen level. If aeration is employed, all containers are treated equally. In the 96-hr test, the test solutions are renewed at 48 hours at a minimum (more if needed for purposes of specific chemicals in solutions). Loading must not exceed 1.1 g/L.
- 7.4 <u>Preparation of Test Solutions</u>: Each chemical stock solution is prepared by manual mixing with dilution water to prepare a series of test concentrations. The test dilutions are brought to the test temperature by partial immersion of the test containers in a water bath and, if necessary, are gently aerated until the dissolved oxygen concentration is 6.0 mg/L or greater. A solvent may be required to get some of the chemicals into solution.
- 7.5 <u>Beginning the Test</u>: The test is begun by adding the organisms to the equilibrated test containers as previously described.
- 7.6 <u>Feeding</u>: Animals are fed weekly during holding. If deemed necessary, animals will be fed prior to the 48-hour renewal.

October 11, 2006

DRAFT

7.7 <u>Test Duration, Type and Frequency of Observations, and Methods:</u>

The test duration of the range finding toxicity test is 96-hours. The type and frequency of observations to be made during the test are summarized as follows:

Type of Observation	Times of Observation
Biological Data Survival (in each test container)	Daily
Physical and Chemical Data Temperature and dissolved oxygen	Daily
рН	Beginning, at renewal, end
Hardness and alkalinity	Beginning and end
Sample for chemical measurement (each concentration and control)	Beginning and end

During the test, dead organisms are removed at least every 24 hours. Dissolved oxygen is measured in each stock test solution using a polarographic oxygen probe calibrated according to the manufacturer's recommendations. The pH is also measured in each stock test solution using a pH probe and a properly calibrated meter with scale divisions of 0.1 pH units. Temperature is measured with a calibrated mercury thermometer or telethermometer. Conductivity is measured with a conductivity meter. Hardness and alkalinity are measured using Hach test kits.

7.8 <u>Test Acceptability Criterion</u>: In a range finding test with only five animals in the control, the standard acute control survival criterion of 90% is not realistic. If one animal dies randomly, the test would not meet the criterion. Test acceptability will at the discretion of the study director.

8. DATA ANALYSIS

The data generated from the range finding test will be used to estimate the concentrations to be used in later definitive test. Percent survival is calculated for each treatment replicate, and, if there is more than one replicate per concentration, the means are obtained for each treatment level. An LC50 is calculated using Probit, Spearman-Karber, or Trimmed Spearman-Karber method.

9. REPORTING

The final report of the test results must include all of the following standard information at a minimum: name and identification of the test; the investigator and laboratory; information on the test material; information on the dilution water; detailed information about the test organisms; a description of the experimental design and test chambers and other test conditions including water quality; definition of the effect criteria and other observations; responses, if any, in the control treatment; tabulation and statistical analysis of measured responses; a description of the statistical methods used; any unusual information about the test or deviations from procedures.

DRAFT

10. STUDY DESIGN ALTERATION

Amendments made to the protocol must be approved by the sponsor and study director and should include a description of the change, the reason for the change; the date the change took effect, and the dated signatures of the study director and sponsor. Any deviations in the protocol must be described and recorded in the study raw data.

11. REFERENCE TOXICANT

Reference toxicant testing is not practical or required with range finding testing for research purposes.

12. <u>REFERENCED GUIDELINES</u>

ASTM. 1996. Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. E729-96. American Society for Testing and materials, Philadelphia, PA.

EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (Fifth Edition). EPA-821-R-02-012. Office of Water, US Environmental Protection Agency, Washington, D.C.

13. APPROVALS

	for Windward Environmental
Name	Date
	for Northwestern Aquatic Sciences
Name	Date

APPENDIX II

RAW DATA

TEST DESCRIPTION, MONITORING, AND RESULTS BENCHSHEETS – HOLDING DATA

ANIMAL RECEIPT/HOLDING: FRESHWATER SPECIES: Lampetra tridentata (Pacific Lamprer)

Init.	\$ 3	577	4	þ.		7	びり	T.	P	190	1/2		J.	& c	143	1	2 5	چ کر		15	\$	3	8	_ .	
Comments	5 40100 E		Tank#140	MAKS B3,	4:7#	the dery Wg	tank#5 Heldingra	Fank #8 Hell in 1703	TE#229	大麻のどの	150个155	10, 11,12,13	Tamb # 13 Mg	45 19 18 18 18 18 18 18 18 18 18 18 18 18 18	机体料	されまま	Little ingles and	1/4/1 1 A TAKE.	1.16 TAKE	tenx # -1	しらんせい	TKWIG	17. H. 17		
Disposition	Are dah			are duta	JHO.	34 tax #8	-			Ermoved Ideas	Red date			Rec '09.00	10 tent 14		8/ my [2]	, ha					230 April 6 02.1	Fr 7	
Feeding		Į					ſ					i	-	-	1			3	,						
Water*	425-	١	cah		1	1/65	755	j. Ž	7	74	J. 12-00	-	4	:	-	-		`\	÷	=	=	-	-	3	
No. of	28	ļ	0	0 0 0	2,455	~313	-	<i>:</i>	3	3	To the Contract of the Contract of the	Park Auc.	2500	787	` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-	٠ (~_	=	1	=	-	
Source	5; /eta, Kiwir.	4: 12tz River CV)	727	Jen (12)	, ,	7, 11		, , , , , , , , , , , , , , , , , , , ,		11 34	6:10th 210C	(certain Co)	1/ 12		3, 11)) "	1)), ,)	11 1		7	11 60	
ALK	(mg/L)	3	1 1	00	2	09	30	30	0%	2 6	2	2	6	2	2 /	SS	3	50	202	Î2	1	ဂ္ဂ	3	2	
HARD	(mg/L)	0 :	2 6	43	20	15	15	7.7		<u></u>	7	2/2	j.t.	ì	^	43	43	43	43	V		<u>1</u>	42	43	
COND	(μmhos/cm)	i e		135	95	122	120	500	05	0.6	120	75	3	200	051	55	3	130	130	. ^	152	<u>ල</u>	130	135	
 -	一	× 7		6.4	9,6	8.0			- '		60.8	2,00	0 3			6.3	00	-	+	╌	Q 01	J. 0	100	\vdash	
n.	bus	5.3	j	7.4	6,0	<u></u>	7		<u> </u>	7	2	, ,,	7 6	1	6.0	٥ <u>ک</u>	7	12	4		7.X	() (%)	40	12.6 79	 -
TEMP	(2)	2	1	6.3	7.67	1	ر ا ا	- 1	(A)	4.7	12,000.51	_	(2)	(3/1.)	5	70	1 12.0	7. C	1 7	7,7	× 2	123	12.8 78	7	_ ,
1	DAIE	10.172	10-1720	10-18-06	P. 61 608)-01	10-16 N 17 5	70-02-C1	2 -	(O - A -67	10-22-06 12-2 7	10-33-dl	1.07 28	300	10-27-06 14.3	ながい。こ	10.25th	10-36 a 12,0 74	12.27		2 3 7	10.29.01	1.040:04 12.7	10-3/4	1	

* Held in Flow though tanks

SPECIES: Lampetra tridemista (Pacific Lamper)

			-)				
DATE	TEMP (°C)	Hd	DO (mg/L)	COND (µmhos/cm)	HARD (mg/L)	ALK (mg/L)	Source	No. of Animals	Water Change	Feeding	Disposition	Comments	Init.
1 22-2-11	1-21	8.27	8.2/10.3	330 130	5.1	25	STICH RIVER	27.50	くずら	į		748K#6 742 14KE7	3
1-3-6-1	11.8	7.9	8-0	(30	51	40	13	. 13	-		-	Tank #9	GH.
11-4-06 1	11,3	8.0	11.6	130	51	$\psi_{\mathcal{O}}$) 1	ζ(t)			tw/k#13	Hi
11-5-26	16	7.4	47	135	کز	c\$	11	C367	<i>)</i> ,	ı		+89×共16	His
1 90-911		7.9	<u>w</u>	6/1	โก	30	-	Ξ	11			Tank # 1 Wils Taken	1. P. J.
30-E-);	57	4.4	511	(35)	2/	95	H	//	/ 1	ì		till # 11	(2,1
1.80	11.5 8.0	20	11.2	125	1.5	25	11	1 (, (がかかり	CP
1192	8-11	C-8	11-3	521'	51	ah	١ ١	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11)	seel 2 100 the	174	3,
		6.7	16.2	415	43	25	11	280	/3		-		GH/LE
	= - 5	#	11.11	021	15	ch	. 11)/	- 1			だかがなし	500
	4.11	4.8	0.11	06)	1.5	0/2	ñ	111	-	1		TANK # 13 NH2, TAKEN	6.17
11-13-4	1.4	9.£	11.0	i \$c	5.(40		1		(Track # 15	175
37.1.	911	7.5	b'a)	125	5/	C/h) }	-		Ì		Just to 14	45
8 11 90-51 11 8		3.6	(8.9	13ú	S	9		=	S	ļ		Testr #19	LPS
11-11-07		7.4	11.01	/30	43	50)	, 11				Tank #18	6-41
11-17-06 11.6		7,6	11,3	T 1 V	S.	20		=	=)		TOKK#1	1PS /SI
8-11 Pa.81-18		ナイ	1.5	720	51	20	ŀη	77		İ		المكثرة	2
P-11 4005-11	l	23	111	all	15	ch	\$	<	1)	-		THE	5
27-13		Į	ĺ	-		j	11	7,2	12/2 the	र्षा इस्के	all trades red	23 dryyeu	(Q)
11-22-06 11.4		4,	か。これが	125	N -	50	l)	=	!			Tank# 15	LP5

ANIMAL RECEIPT/HOLDING; FRESHWATER—temperature acclimation study SPECIES: Lampetra sp.

Init.	tite	631	113		E	97	É	275	3	ż		H.S	6,37	E	L		11.2	-	3		_				
Comments	TANKLI 4 MAS	TANK # 19	TANK # 18	fresh taken	NH- WILES	Part # 10 Cales	Twin # 14	TANK#18 NH3-11 TAKEN	を生いており	TKA 18	1/2/ HO	3	NHS N TAKEN	79.44 P.	7.44.7	Mary TAKEN	LANK TO	-14×41-	WHY W CHEN			-			
Disposition														,											
Feeding								:	<u>.</u>									-							
Water	Sah	263	-	5		11	(4	r)	17	Ξ	=	۲		-		<u> </u>	<u>.</u>	-							
No. of Animals																	_								
Source	S. leta River	11 /1			11 11	16 17	11	12	17 17	1 17		1 1	n n	1) 3'	2	11 11	1		η						
ALK (mo/L)	(28)) (}	50	30	50	50	40	20	67.	20	₩ C	97	7	2	2	3	}	202						
HARD	(TAMIN)	~ ~	3	03	2(3	51	09	3		>	2	9	į	^	00		3	7						
COND	(himnos/cin)	3	501	140	ch)	150	ohi	135	120		130	771	140		2%	125		135	3					.*	
DO	(J/gm)	> ;	0	≒ 4	41		K	0 =	7	2	1:1	D,0	4.01	2	1,5	4.01		10.4	11.0			 		,	
Ha	,	<u>, , , , , , , , , , , , , , , , , , , </u>	٥	<u>ئ</u> نو	7,2	7 7	74		2	,	3.3	7,	7 7	, -	62	122 73		† *	4			 1	_		
TEMP	၌ <u>၂</u>	11-6	12,0	1.3	11.6	2/1	? e	,, =	011	0-11	12,11	3 =	4 7	r =	071	127	2	12.0	7						
DATE	╢		11-25-06	11-26-96	W.T.V.	Jese !!	11-24-Az		3.2-1	1272	1275	17-8.06		12-4-06	1.25.17.0	1	20.00	12.7.46	30-5-41						

Page 3 of 73

ANIMAL RECEIPT/HOLDING: FRESHWATER—temperature acclimation study SPECIES: Lampetra sp.

	Init.	B	632	651	F.S	H	3	237	§	,							
	Comments	The Later	TANK # 15 NH PATAKEN	TANK # 17 NH3 N TAKEN		Tank # 16		TAUK # 15	1	× 012 × 704.21							
	Disposition	9															
:	Feeding																
Water	Change	sah	455	12	-3	=	A.	1									
No. of	Animals														_		
Conne	Source	Salety hun	11 н	×+ - il	1 31	11 11	41	11 11				The state of the s				,	
ALK	(mg/L)	40	S	Oħ	$\gamma_{\mathcal{O}}$	3	50	40	Q.								
HARD	(mg/L)	51	09	60	60	09	15	90	60								
COND	(muhos/cm)	125	135	140	145	140	C/J)	140	140					·			
DO	(mg/L)	11.4	10,7	10.7	2,8	9.6	9,4	9.3	4-4								
Hu		7.7	7.3	1 .5			4	₹. S.	7.1								
TEMP	္မ	12.2	13,5	1 1 .6	15.5 7.3	16,8	16,8	<u>1,</u>	(6,3								
DATE		1240x 12-2	11-25-06 13,5	11-26-06	11-37-06	90.88-11	11-24-06	11-30-ch	(2/2)								

Page 4 of 73

ANIMAL RECEIPT/HOLDING: FRESHWATER—temperature acclimation study SPECIES: Lampetra sp.

Init	5	3	61.1	53	3.	5	631	Git										
Comments	20 to 2226	アドルンプル		TANK BI	アルハイエイン	Thinks +	TANK # 15	Thur #1										·
Disposition																:		
Feeding																	·	
Water Change	7.7	it	1)	1	į	<i>i</i>)	ij	-										
No. of Animals	ت٦١-	1.6) ;	11	11	7, 1	·	L										
Source	Splane	11	1	11		11	i ii	п										
ALK (mg/L)	5.0	30	30	40	70	50	50	0)							-			
HARD (mg/L)	51	51	15	2(15	7	51	15										
COND (mmhos/cm)	541	170	091	155	(3	155	150	a51		·				·		:	-	
DO (mg/L)	3-8	رن 1	8.8	9,0	8-7·	5-8	8,8	8.8										
Hd	7.3	23	x.E	7.2	7.3	25	त्रं,प	ķ										
TEMP (°C)	:	17.9	5'8)	19.3	102	21.6	21.1	4-9				- *						
DATE	21-11	12.20%	12.306	12-4-00	455-21	12 To me	12-7-06	79-8-71	-									

Page 5 of 73

L(m) W(s) 1, 8.4(m) 0.78g 2. 8.1(m) 0.78g 3. 5.1(m) 0.17 4. 4.5(m) 0.15 5. 3.0(m) 0.06 6. 2.8(m) 0.04 Tank # 1 lampreys
(First Borch)

Initial representative Bubsample upon lab recept

10-23-06 GH

wrote wrong units
GH 2-15-07

TEST DESCRIPTION, MONITORING, AND RESULTS BENCHSHEETS – CHEMICAL TESTS

11-300

11-8

108

LAMPREY SURVIVAL RANGE-FINDING TEST

		11 01:						
·	Test No. <u>686-31</u>	Client	Windward			_ Investigator	-	
		•					*	
	STUDY MANAG						• •	
			mental, 200 West Me	rcer Street, Su	ite 401, Sea	ttle, WA 981	19	
		Monitor: Ms. H						
	~	•	tern Aquatic Science	s				
		: Newport Labor				•		
		Study Personnel:						
•	•	•	rector: <u>G.A. Buhle</u>	<u>r</u>		7:1	 	
•		er: L.K. Nemeth		1. 6.J.1K	USSARR	1 83 -	<u> </u>	
	2. <u>16.3</u>	. Caldwell	DEV	_ 3,				
	4			_ 5				
	Study Schedu	le: پر دوز	4000			11-12 -	1700	
	Test Begi	nning:	1820	_ Test Ending	: <i>/</i>	1-13-00		
	TEST MATERIA				1.			
	Description:_		isher Scientific Lot #	1062904 (P.	111729	9-9% 6	ssu4)	•
	NAS Sample	_			- 		. ,-	-
	Date of Prepa	ration:						•
		: ~						-
	DILUTION WAT		•	•			•	
	· -	City of Newpor	t tap water					
		ration/Collection			······································			•
		r: Cond. (µmhos.	/cm)		<u> </u>	. 		
	Hardness (mg			calinity (mg/L	as CaCO3)	40		
	Total Chlorine	e (mg/L, DL 0.02	2 mg/L) ′ (0-02					
	Treatments:	Dechlorinate	d, aerated ≥ 24 hours					المرة المستدين
# Tank o	of dilution water	was prepared	t before lamprey	s were receive	ed in the	-lab, topped	toff daily u	edan 11-9-06.
	TEST ORGANIS	MS: and con	& before lamprey stantly acrosed.	Direction w	some ner	energy ten 142	r cos reme	
	Species: Lamp	petra sp.	Age/Size:_	9 mmoc	optes			
	Source: Sile	tz River, Oregon	-Cedar Creek area					
	Acclimation I	Data:						
	Date Te	emp. pH D	OO Conductivity	Hardness A	Alkalinity	Total	Comments	

Ammonia-N (including tank #) (°C) (mg/L) (µmnos/cm) (mg/L) (mg/L) (mg/L) 43 7-4 130 570 200 #2 1006 10-26-06 124 43 0.00 10-1700 70 50 417 112 130 10-2800 12-4 0-00 #3 71 108 15+43 40 130 1351 0.01 8.1 20 124 135 10-37-06 129 10.8 43 8.0 #5 130 001 My 10-30-06 12.7 43 YD 78 10-2 130 00 12-8 #19 103,00 126 40 00 43 10,3 135 #14 11-100 0.00 #6 8-2 10,3 130 50 11-206 51 130 p.00

51

40

130 000 40 8-0 11-6 #13 51 11-4-06 11-2 79 79 135 50 11.2 51 0-00 216 11-6 11-5-04 120 30 #1 000 13.0 51 11-6-06 13.2 ,30 50 001 7-7 51 #11 11.4 11-700 125 5 50 0-01 417 80 11-2 11-8-06 11.5 5) 40 #4 11-3 125 0-00 80 11-900 11-8 7.8 130 48 45 11-0 0.00 Mean 122 0.7 S.D. 000 0-6 0-4 V (15) (N)

29

LAMPREY SURVIVAL RANGE-FINDING TEST	
Test No. 686- X Client Windward Investigator_	
TEST PROCEDURES AND CONDITIONS:	·——·
Test Concentrations (10% series recommended): 1 000, 100, 10, 10, and 0 and 0	
	. *
Test Chambers (description): 2.5 gallon glass aquaria covered with plastic wrap and plastic lids	
Test Volume (mL): 2.8 L Replicates/treatment: 1	

Organisms/treatment: 5 (5/repl) Temperature (°C) 12 ± 1

Test water changes: one, at 48 hours Aeration during test: Yes

Feeding: None. Test Duration: 96 hr

Photoperiod (L/D): 16/8 Light intensity (ft.c.): 65-4 11-10-06 6743

Beaker Placement: Stratified randomization

Randomi	zation chart:	·	Locatio	n: Room 1	
Ø	100	1000	1-0	10	

STOCK SOLUTION PREPARATION:

TEST SOLUTION PREPARATION:

3.7 mL of aniline stock is diluted to 3,700 mL; this is the 1,000 mg/L concentration. 370 mL of this is then diluted to 3,700 mL; this is the 100 mg/L concentration. This process is repeated for the 10 and 1.0 mg/L concentration.

After all solutions are mixed, 500 mL is removed for chemistry samples.

LOADING (g/L):

(N)

(5)

(weigh and measure length of controls at end of test)

	11/18/06
Length (mm)	Weight (g)
72	0.49
67	0:38
71	0,47
79	0.63
83	6.75
× 74	0.54
30 <i>6</i>	0-15

0.54g/Filx5Fih = 2-82= 0-96g/L

(5)

Page 2 of page 8 of 73

Revised 11/8/06

			DUB 1600
_	 	. 7	1 ~

Test No. 686-431 Client_ Windward

Investigator

WATER QUALITY DATA SHEET

DAY 0 (11 /9 106) 05/611

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1,000	12.8	7.6	10.5	120	51	440	5	All fis L quiescent
100	12.8	7.4	10.4				5	
10	12.9	7.4	10.4				5	
1.0	12.8	7.2	10.5				5	
Control	12.8	7.2	10.4	110	ร์เ	40	5	

NOTES: Sample new solutions at each concentration and ship to CAS.

DAY 1 (11/10/06/A)

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1,000	12.4	74	10-3	15B 775			5	Au Fish Quescent
100	124	7.4	10-2				5	
10	123	74	10.4				5	
1.0	124	7-3	10.3				5	
Control	123	テン	102				5	

DAY 2 (11/11 /p/2) AS

DAIL	1311	0(3)						
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1,000	126	25	104	125	51	460	2(30)	ALL SURVEY high
100	125	74	10-60				· 5	
10	124	7.4	10.00				5	
1.0	12-5	7.3	10-6			100	5	
Control	124	2.3	10.6	120	51	40	5	

NOTES: Sample new and old solutions at each concentration and ship to CAS.

	LAM	PREY SURVIVAL RANGE-FINDING TEST		
31	B 11-16-24		•	4
Test No. 686-4	Client	Windward	Investigator	
		WATED OHALITY DATA CHEET		

DAY 3	(11/12/	06)65	2/8 Eu	armer"				
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1,000	12.8	7.6	10.4				2	Quescos
100	12.8	7.5	10.2				5	0
10	12.6	7.4	9.9				5	
1.0	12.8	7.5	10.1				3	·
Control	12,9	7.5	10,2				5	

DAY 4 (11 115 1	وهما (تعان)						
Conc. (mg/L)	Temp (°C)	pH	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1,000	125	25	10.2	125	51	440	Ocro)	
100	126	7.3	10.1	Totalian (C. F.) Sacrata da Cara			5 '	magnite, 115 ht it sectioned
10	123	2-3	10.3				5	remel
1.0	125	72	10.2				5	1
Control	12-4	72	W.V	120	51	40	5	\$

NOTES: Sample old solutions at each concentration and ship to CAS. Weigh and measure lengths on control animals.

COMMO	animais.		_		_	1000
X	12.6	7-4	103	120	51	447 40
	0-2	0-1	0.2	5	0	12/0
50	(25)	(25)	(25)	(ما)	(4)	12 0
(N)	(15)	(**)		**)	• •	

Test No. 686-4

Windward

Investigator

WATER SAMPLING RECORD

NAS Sample	Des	cription	Dete	<u> </u>		T
#	Day	Conc. (mg/L)	Date	Time	Initials	Comments
07906	Day 0	1,000	11-9-06	1545	613	Swine
07916		100			1	
07926		10				1
07936-	Day 0	1.0				800mL
07946	Day 0	control	b	*5	*	1,000.mL
08256	Day 2-old	1,000	11-11-00	1645	M	1000 1916
08266	Day 2-old	100	1	1	<u> </u>	1
08276-	Day 2-old	10				
08286-	Day 2-old	1.0				
081511	Day 2-old	control	17		6	4
08306	Day 2-new	1,000	11-11-06	1610	697	520mc
08316	Day 2-new	100	1	1	1	i
08326	Day 2-new	10				
03336	Day 2-new	1.0				Rome
08346	Day 2-new	control	7	*	*	1,000.ML
08500	Day 4	1,000	11-150	1720	LND	100016
C)8570-	Day 4	100			1	1
0854-	Day 4	10				
	Day 4	1.0			7	
U8536- U3546-	Day 4	control		b	1	1

								* * -
	- 31	D 41311th ar	Windward			Investigato	r	
	Test No. <u>686-22</u>	Chent	Williawara			ilivestigato	·	
		and the officer in Ferrica.						
	STUDY MANAG	EMENT:		usau Ctuant G	wite ANT Cor	41° 22/4 U61	10	
•			nental, 200 West Me	rcer sueel, s	suite 401, Sea	ille, WA 701	17	
		Monitor: Ms. He		····			· · · · · · · · · · · · · · · · · · ·	
			ern Aquatic Science	S				
1		: Newport Labora	tory				•	
	Laboratory's	Study Personnel:		43				
	Project M	Ianager/Study Dire	ector:G.A. Buhle					
	QA Offic	er: L.K. Nemeth	· · · · · · · · · · · · · · · · · · ·	1. 6.J.	RISSARR	1 67 T	·	
	2. 46.8	. Cildrel 6	\$ E	3				
	4.			_ 5				•
	Study Schedu	le:				1620		
	Test Beg	inning: 11-9-6	6 1700	Test Endi	ng:	1600		
	2,101 = 10	<u> </u>		_				
•	TEST MATERIA	AT.•					•	1
			04•5H2O, Argent Lo	t No. 0195.	Img/mL s	tock prepared	10-27-05.	
	NAS Sample		1 porty 9 1%					
			Wirty 7 15	2 1411713103	<u> </u>			-
	Date of Prepa	ration						-
		;						- ·
				•				
	DILUTION WA							
		City of Newport	tap water	· · · · · · · · · · · · · · · · · · ·				•
		ration/Collection:						
		y: Cond. (μmhos/c			22			
		/L as CaCO ₃)		calinity (mg/	L as CaCO ₃)	40		
	Total Chlorin	e (mg/L, DL 0.02)	mg/L) (0.07	<u>'</u>	•			
	TD	D = -1-1 = min material	accepted > 24 hours	ì				ماسان د
* Tank a	of dilution wolf	er mar buchave	d before knyre antly aeroded.	15 were rec	exted m +	he lab, top	ped off dails	d on 11-9-06.
	TEST ORGANIS	SMS: and const	entry acrosed.	Jitucron i	O'K' NEES	recreated test	- was remove	
	Species: Lam		Age/Size:	ammoo	ortes			
			—Cedar Creek area				* .	
	Acclimation							
		emp. pH DO	Conductivity	Hardness	Alkalinity	Total	Comments	
	Date 1	ATTEN PATE PAGE		1			1	ı

ccumati	on Data.							
Date	Temp.	pН	DO	Conductivity	Hardness	Alkalinity	Total	Comments
	(°C)		(mg/L)	(µmhos/cm)	(mg/L)	(mg/L)	Ammonia-N	(including tank #)
	()		\				(mg/L)	
10.2600	12-6	7-4	10.6	130	43	50		#2
10-2716		70	11-2	130	43	5 D		#17
10-2800		71	10.8	130	43	40		#3
10-71th	. 3	8.1	10.8	135	51	50		世11
10-300	127	80	104	130	43	50		#5
100/00	1 0	78	10.2	130	43	40		#19
14/00	12:4	79	10.3	135	43	40		#14
1124	12-1	1	10-3	130	51_	570		18 li
11300	11-8	79	10.8	130	51	40		#9
11-4-46	11-2	80	11.6	130	51	40	<u></u>	#13
11-506	116	79	11-2	135	51	5-0		#16
11-006	13.2	79	13.0	120	51	30		#/
11-726	11-9	テナ	11-4	130	51	50		#11
11-806	11-5	80	11-2	125	51	50		#17
11906	11-8	80	113-	125	51	40		#4
Mean	122	78	11.0	130	48	45		
S.D.	06	04	5.7	0,4	4	W		
(N)	(15)	1151	(15)	1157	(13)	(15]		

32 (DOBHH620

Test No. <u>686-2</u>	Client	Windward	Investigator	
			mvcstigatoi	

TEST PROCEDURES AND CONDITIONS:

Test Concentrations (10% series recommended): 1.0, 0.1, 0.01, 0.001 and 0 mg/L (control)

Test Chambers (description): 2.5 gallon glass aquaria covered with plastic wrap and plastic lids

Test Volume (mL): 2.8 L Replicates/treatment: 1

Organisms/treatment: 5 (5/repl) Temperature (°C) 12 ± 1

Test water changes: one, at 48 hours Aeration during test: Yes

Feeding: None. Test Duration: 96 hr

Photoperiod (L/D): 16/8 Light intensity (ft.c.): 64.5 11-10-06 43

Beaker Placement: Stratified randomization

Randomiza	tion chart:	·	Location: Room I				
0.001	1-0	ø	0.01	0.1			

STOCK SOLUTION PREPARATION:

TEST SOLUTION PREPARATION:

3.7 mL of 1mg/mL copper stock is diluted to 3,700 mL; this is the 1.0 mg/L concentration. 370 mL of this is then diluted to 3,700 mL; this is the 0.1 mg/L concentration. This process is repeated for the 0.01 and 0.001 mg/L concentration.

After all solutions are mixed, 500 mL is removed for chemistry samples.

LOADING (g/L):

(weigh and measure length of controls at end of test)

Length (mm)	Weight (g)
55	0.25
51	0.19
50	0.19
26	0.24
28	0.42
54	0.26

× 54 0.26 50 3 0.09 0.269/Fish x 5Fish = 2.81= 0.469/L

Page 2 of

Revised 11/8/06

3204511600		
Test No. 686-2 Client	Windward	Investigator

WATER QUALITY DATA SHEET

DAY 0 (11/9/06) 1 GAB/631

PALVO	T # 1 # 1	 						
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1.0	12.2	6.9	10.8	uo	51	40	5	
0.1	12.1	7.1	10.8				5	
0.01	12.2	7.1	10.7	6346-34	550	20 May 19	5	
0.001	12.1	7.1	10.8		Times and	2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5	
Control	12.3	7.1	10.6	110	51	40	5	

NOTES: Sample new solutions at each concentration and ship to CAS.

DAY 1 (11/10/00 MS

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1.0	12-2	72	ما ١٥٠		(110-2)	(5 -)	0(50)	· · · · · · · · · · · · · · · · · · ·
0.1	17-3	22		the second secon			5	-
0.01	123	72	10.2			0 9 10 to	5	
0.001	124	72	10.5	13.5 e.5 20.0 c. 3			5	
Control	126	72	10-3				5	

DAY 2 (11 / 11/00) 675

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1.0	12.2	7.3	10.7	120	51	40	0	
0.1	12.3	73	10.6				5	ALL FISH qui Esant
0.01	123	23	10 6				5	
0.001	12.3	73	10-6				5	
Control	12.4	7.3	104	115	51	40	5	<u>.</u>

NOTES: Sample new and old solutions at each concentration and ship to CAS.

Test No. 686-2 Client Windward Investigator

WATER QUALITY DATA SHEET

DAY 3 (11/12/66) 652 /Tes

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1.0	12.7	15	10.4				معمد	
0.1	12.7	7.6	10,3				5	3 gieral
0.01	12.8	7.6	10.5				5	
0.001	12.6	7.6	10.4				5	
Control	12.8	7.6	10,4				5	

DAY 4 (11/13/60)43

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
1.0	12-1	2-3	10.5	115	51	43	0	<i>Ł</i>
0.1	121	7-3	10.3	4000	1 14 E		2(30)	quiesent, light diside
0.01	121	7.2	10.1			30. d. 9.	5	wormal
0.001	121	7.2	10.3				5	
Control	121	7.2	10.2	110	51	40	5	4

NOTES: Sample old solutions at each concentration and ship to CAS. Weigh and measure lengths on control animals.

$$WQ: \frac{7}{\chi} \quad 12-3 \quad 7-3 \quad 10-5 \quad 113 \quad 51 \quad 40$$

$$50 \quad 0.2 \quad 0.2 \quad 0.2 \quad 4 \quad 0 \quad 0$$

$$(15) \quad (25) \quad (25) \quad (16) \quad (16) \quad (16)$$

32	63 11-1620		
Test No. <u>686-2</u>	Client	Windward	Investigator

Coppe

WATER SAMPLING RECORD

NAS Sample	Des	cription	<u> </u>		T	T
#	Day	Conc. (mg/L)	Date	Time	Initials	Comments
07756	Day 0	1.0	11-9-06	1400	6A3	500mL
07766	Day 0	0.1	1	1		300
07776	Day 0	0.01				
07786-	Day 0	0.001				
07796	Day 0	control	7	4-44K	V	الماران الماران
07956	Day 2-old	1.0	11-11-04	1545	urs	Two cal
07966	Day 2-old	0.1		1	1	3,000 :31
07976	Day 2-old	0.01				
07986	Day 2-old	0.001				
0792	Day 2-old	control	•	•	1	*
08000	Day 2-new	1.0	11-1104	1545	is	Sw.WL
08016	Day 2-new	0.1		i	<u> </u>	1
08025	Day 2-new	0.01		-		
08036	Day 2-new	0.001				
08045	Day 2-new	control	4	4	•	*
08356	Day 4	1.0	11-13-26	1600	WB	5 1000m C
08366	Day 4	0.1		, , ,		ih
08370	Day 4	0.01				
08336	Day 4	0.001		1		
08396	Day 4	control	40	7	1	15

(N)

Test					XX7: decomposed			_ Investigato	•				
	No. <u>686</u>	<u>-я</u> С	lient	<u></u>	Windward			<u> </u>					
CTI	IDV MAI	VACEME	NT-										
	Client: Windward Environmental, 200 West Mercer Street, Suite 401, Seattle, WA 98119 Client's Study Monitor: Ms. Helle Anderson												
	Testing I	aboratory	North	nwestern A	Aquatic Science	s							
	Test Loca	ation: Nev	vport I	aboratory	•								
	_		_			. . .			4				
	Proie	ect Manage	er/Stud	y Director	: G.A. Buhler	^r KD							
	OA	Officer: L	K. Ne	meth		1. 6.1.	IRISSAR	RI 631					
		67-5./				3.							
	4.					5							
	Study Sc	hedule:						ا بسوان	سن الماري				
	Test	Beginning	g:/	1-9-06	, 1745	_ Test Endi	ng:/	1-13-0/2 1	673				
							•						
TES	ST MATI	ERIAL:			*								
	Descripti	on:	Pentac	chlorophen	ol (PCP) Eastn	nan Organic	<u>Chemicals</u>	* ÷ *					
	NAS Sar	nple No.:											
	Date of I	Preparation	1:										
			:										
DIL	UTION	WATER:											
	Descripti	on: City	of Ne	wport tap v	water								
	Date of F	reparation	ı/Colle	ction:	11-9-06	Ķ.							
	****	-1:4- Ca	nd fur	nhos/cm)_	110	pH み	2						
						_ P11							
	Hardness	(mg/L as	CaCO	3)	<u>5) </u>	alinity (mg	L as CaCO ₃	<u> 40</u>					
	Hardness	(mg/L as	CaCO	3)	<u>5) </u>	alinity (mg	L as CaCO ₃) YO					
	Hardness Total Ch	(mg/L as lorine (mg	CaCO /L, DL	3) . 0.02 mg/l	51 Alk L) 20.02	calinity (mg	L as CaCO₃	ŕ					
of	Hardness Total Ch	(mg/L as lorine (mg	CaCO /L, DL	3) . 0.02 mg/l	51 Alk L) 20.02	calinity (mg	L as CaCO₃	ŕ	loff daily w				
. of TES	Hardness Total Ch	(mg/L as lorine (mg	CaCO /L, DL	3) . 0.02 mg/l	51 Alk L) 20.02	calinity (mg	L as CaCO₃	ŕ	toff daile, wi twos remard				
of TES	Hardness Total Ch Treatmen At the construction ST ORGA Species:	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp.	3) 0.02 mg/linated_aer prepared ms+ant	5 Alk L) 20-02 ated ≥ 24 hours before lamp ty aerated Age/Size:_	ralinity (mg	Las CaCO3 received in water ne	ŕ	toff dailer wi twos removed				
. of TES	Hardness Total Ch Treatmen At the construction ST ORGA Species:	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp.	3) 0.02 mg/linated aer	Alk L) 20-02 ated ≥ 24 hours before lamp 'y aerated' Age/Size:_ dar Creek area	ralinity (mg	Las CaCO3 received in water ne	ŕ	toff daily w twos removed				
. of TES	Hardness Total Ch Treatmen Active ST ORG Species: Source:	s (mg/L as lorine (mg nts:	CaCO L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/linated aer	Alk L) 20-02 ated ≥ 24 hours before lamp Hy aerakei Age/Size: dar Creek area lig clafa	ralinity (mg	Las CaCO3 received in water ne	lab, topped eded for to					
. of TE	Hardness Total Ch Treatmen Active ST ORG Species: Source:	s (mg/L as lorine (mg nts:	CaCO L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	lab, toppeded for to	Comments				
· of TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) . 0.02 mg/linated, aer oregon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp Hy aerakei Age/Size: dar Creek area lig clafa	ralinity (mg	Las CaCO3 received in water ne	Total Ammonia-N	Comments				
· of TE	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	lab, toppeded for to	Comments				
· of Te	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
· of TE	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
· of TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
ef TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TE:	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TE:	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TE:	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TE:	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TE:	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments (including tank #				
TE:	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant regon—Ce	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				
TES	Hardness Total Ch Treatmen Activities ST ORGA Species: Source: Acclima	s (mg/L as lorine (mg nts:	CaCO /L, DL Dechlor was and c sp. ver, Or	3) 0.02 mg/l inated aer repard onstant	Alk L) 20-02 ated ≥ 24 hours before lamp in aerated. Age/Size: dar Creek area Age/Size: Conductivity	Hardness	Las CaCO ₃ received m water ne are fes Alkalinity	Total Ammonia-N	Comments				

LAMPREY SURVIVAL RANGE-FINDING TEST									
Test No. <u>686-2 Client</u>	Windward	Investigator							
TEST PROCEDURES AND CON	DITIONS:								
		0.004 and 0 mg/L (control). All							
Test Concentrations (10% series	, 1000::::::::::::::::::::::::::::::::::	0.004 and 0 mg/L (condut). An							
concentrations are nominal.	, 1000immondod)+.0, 0.4, 0.04,	0.004 and 0 mg/L (conduit). An							
	·. -								
concentrations are nominal.	·. -								

Beaker Placem	ent: <u>Stratified</u>	<u>l random</u>	<u>ization</u>		
Randomiz	ation chart:		Location	: Room 1	
0.4	0,004	Ø	0.04	40	

Light intensity (ft.c.): 689

Test water changes: one, at 48 hours Aeration during test: Yes

STOCK SOLUTION PREPARATION:

Photoperiod (L/D): 16/8

Feeding: None.

TEST SOLUTION PREPARATION:

370 mL of 40 mg/mL PCP stock is diluted to 3,700 mL; this is the 4.0 mg/L concentration.
370 mL of this is then diluted to 3,700 mL; this is the 0.4 mg/L concentration.
This process is repeated for the 0.04 and 0.004 mg/L concentration.

After all solutions are mixed, 500 mL is removed for chemistry samples.

LOADING (g/L):

(weigh and measure length of controls at end of test)

Length (mm)	Weight (g)
55	0, 23
51	0.18
50	6.15
49	0.17
62	0.66
<u>~~</u>	0.28

0,28 g/Fish × 5 Fish = 2-8L= 038 g/L CRICGINATION 2-19

\$ 57 0.28 \$0 14 0.21 (N) (5) 15)

Page 2 of

Revised 11/8/06

Page 18 of 73

	EY SURVIVAL RANGE-FIND	DING TEST	1
Test No. 686-3 ³³ Client Client	Windward	Investigator	- 1

WATER QUALITY DATA SHEET

D	AY 0 (4/9/	(L) 1/5	/631					
1	Conc. (mg/L)	Temp (°C)	рН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
	4.0	12.2	7.2	10.4	115	51	40	5	All, tish quiesent
	0.4	12.2	7.1	10.4				5	
	0.04	12.2	7. [10.2	5 5 6 5 8 5 2 5 5 5 5 5 5			ک	
	0.004	12,2	7.1	10.4		ta Bitana	130 TO 150 TO 15	5	
-	Control	12.3	7.1	10.4	110	51	40	5	

NOTES: Sample new solutions at each concentration and ship to CAS.

DAXI		000						
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
4.0	122	74	10.2				0(50)	
0.4	122	73	10.4				0(50)	
0.04	122	7:3	10.4	in the second			5	
0.004	122		102				5	
Control	122	22	P-3	430 m 113			5	

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
4.0	12-2	25	105	125	51	40	.0	
0.4	12.2	24	105				0	
0.04	122	7-3	10.4				5	
0.004	12.3	7.3	10- W	All and the second			5	
Control	12-3	73	105	120	51.	५०	5	

NOTES: Sample new and old solutions at each concentration and ship to CAS.

LAMPRE	Y SURVIVAL RANGE-FINDIN	IG TEST	
Test No. <u>686-3²³ O Nation</u> Client	Windward	Investigator	-

WATER QUALITY DATA SHEET

DAY 3 (11/12/	OF) 63	1/15-	./			·	
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
4.0	12,7	7.6	10.3				-0	
0.4	12.7	7.6	10.4				-0	
0.04	12.7	7.6	10.2				5	
0.004	12.8	7.6	10.3				5	
Control	12,8	7.5	10:2				5	

DAY 4 (11 13 /	36 JAY						
Conc. (mg/L)	Temp (°C)	рН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
4.0	121	73	100	11551	540	40	D.	
0.4	12-1	7-3	100		7	يرو (12)	O	
0.04	12-1	7.3	185				5	normal
0.004	121	72	104		,0	211-1300	5	
Control	12.1	7.2	104	137	4257	40	5	*

NOTES: Sample old solutions at each concentration and ship to CAS. Weigh and measure lengths on control animals.

73 0 16 14 00 Test No. 686-2 Client

Windward

_ Investigator

NAS Sample #	Des Day	cription Conc. (mg/L)	Date	Time	Initials	Comments
07806	Day 0	4.0	11-906	1415	4743	SoomL
07316	Day 0	0.4	ı	1	1	
07826	Day 0	0.04				
07836	Day 0	0.004				800 ML
07840	Day 0	control		,	-	1,000mL
08050	Day 2-old	4.0	11-11-00	1625	47	1,000,70
08065	Day 2-old	0.4	,	1	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
08070	Day 2-old	0.04				
UPORV	Day 2-old	0.004				
080%	Day 2-old	control	4			
08106	Day 2-new	4.0	11-11-04	1555	12/2	SwmL
08116	Day 2-new	0.4	1			1
081126	Day 2-new	0.04				
081136	Day 2-new	0.004				Bunt
081146	Day 2-new	control	7		b	1000ML
08400	Day 4	4.0	11-1320	1650	LA3	100021
08410	Day 4	0.4			1	
08420	Day 4	0.04				
03436	Day 4	0.004				
03446	-Day 4	control	4	[*] D	77	4

ليكند

Test No. <u>686-</u>	4 ⁷ Cl	ient		Windward			Investigator_	
				•				
STUDY MAN	AGEME	NT:						
Client:	Windwa	rd Env	<u>ironmenta</u>	<u>l, 200 West Mer</u>	cer Street, S	<u>uite 401, Sea</u>	attle, WA 9811	9
Client's St	udy Moni	tor:_M	<u>ls. Helle A</u>	nderson				· · ·
Testing La	boratory:	North	western A	quatic Sciences	}		•	
Test Locat	ion: New	port L	aboratory			** *		
Laborator	y's Study I	Person	nel:	a . p 11	ill			
Projec	ct Manage	r/Study	y Director	: G.A. Buhler	ין ע	2 - 4 - 2 - 4	63L	
QA U	1110 0 1L	V. IACI	IICIII			PISSARR!		
2	<u> </u>	ald L	ell be	<u> </u>	3 5.			
4,					- ^{3.}			
Study Sch	edule:		11-4-11	1800	Tast Endis		1-13-06	1710
Test l	Beginning	:	77 704	7000	_ Test Elluli	ng	1100	1 1 3 -
TEST MATE	DIAI .							•
Description		Lindar	e Aldrich	batch # 07325	DD LOUV	1h: 97	12/6)	
NAS Sam								
	reparation	•	-					
Date of P	i oparanon	•						
`		•						
DILUTION V	MATED.							
Description	on: <u>City</u>	of Nev	wnort tan s	vater				
Descripin	reparation	/Called	tion:	11-9-06	*			
		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_/		77		
Date of P.	alitae Cor	nd (un	thos/cm)	; i O	nH '	サンノン		
Water Qu	ality: Cor	nd. (µn	nhos/cm)_	110 Alk	_ pH alinity (mg/	L as CaCO ₃	40	
Water Qu Hardness	ality: Cor (mg/L as	nd. (μη CaCO ₃	nhos/cm)_ nhos/cm)	51_Alk	_pH alinity (mg/	L as CaCO ₃	40	
Water Qu Hardness	ality: Cor (mg/L as	nd. (μη CaCO ₃	nhos/cm)_ nhos/cm)	51_Alk	_pH alinity (mg/	L as CaCO ₃	90	
Water Qu Hardness	ality: Cor (mg/L as	nd. (μη CaCO ₃	nhos/cm)_ nhos/cm)	51_Alk	_pH alinity (mg/	L as CaCO ₃	yo	The whom need
Water Qu Hardness	ality: Cor (mg/L as	nd. (μη CaCO ₃	nhos/cm)_ nhos/cm)	51_Alk	_pH alinity (mg/	Las CaCO ₃ red in lab, 7 r needed	boped off da for test was	Thy when needs
Water Qu Hardness Total Chl Treatmen of dilution w TEST ORGA	ality: Cor (mg/L as orine (mg/ ts: Downer wa NISMS:	nd. (µn CaCO: /L, DL echlori s prop and c	nhos/cm) 0.02 mg/linated, aer oxed be- constanta	Alk L) <007 ated ≥ 24 hours ore lampreys j aerated, Bit	alinity (mg/	red in lab, 7	isoped off da for lest was	ily when need removed on 11-
Water Qu Hardness Total Chl Treatmen of dilution of TEST ORGA Species:	ality: Cor (mg/L as orine (mg/ ts: Doseler wa NISMS: Lampetra	nd. (µn CaCO: /L, DL echlori s prop erd c	nhos/cm) 0.02 mg/linated, aer o.ed beforestanta	Alk L) <002 ated ≥ 24 hours ore lampreys j aeratect, Bil Age/Size:	alinity (mg/	red in lab, 7	isoped off da for lest was	Thy when needs moved on 11-5
Water Qu Hardness Total Chl Treatmen of Alution of TEST ORGA Species: Source:	ality: Cor (mg/L as orine (mg/ ts: Doger wa NISMS: Lampetra Siletz Riv	nd. (µn CaCO: /L, DL echlori s pro end c sp. ver, Or	nhos/cm))	Alk L) ∠007 ated ≥ 24 hours ore lampreus j aeratect, Bit Age/Size: dar Creek area	alinity (mg/	red in lab, 7	isoped off da for lest was	Thy when needs removed on 11-9
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bef onstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys j aerated, Bil Age/Size: dar Creek area day, dad	alinity (mg/	ved in lab, and the needed according to	isoped off da for test was	
Water Qu Hardness Total Chl Treatmen of Alution of TEST ORGA Species: Source:	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro end c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for test was Total	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bef onstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys j aerated, Bil Age/Size: dar Creek area day, dad	alinity (mg/	ved in lab, and the needed according to	isoped off da for lest was Total Ammonia-N	
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for test was Total	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Dower wa NISMS: Lampetra Siletz Riv ion Data:	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Daser wanner wanter) NISMS: Campetra Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Daser wanner wanter) NISMS: Campetra Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments (including tank #
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/ ts: Daser wanner wanter) NISMS: Campetra Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/L as orine (mg/L as orine)) ts: Dower was NISMS: Lampetra Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments (including tank #
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/L as orine (mg/L as orine)) ts: Dower was NISMS: Lampetra Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments (including tank #
Water Qu Hardness Total Chi Treatmen of dilution of TEST ORGA Species: Source: Acclimat	ality: Cor (mg/L as orine (mg/L as orine (mg/L as orine)) ts: Dower was NISMS: Lampetra Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l nated, aer ard bet constanta DO (mg/L)	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments (including tank #
Water Qu Hardness Total Chl Treatmen of Alution of Species: Source: Acclimat Date	ality: Cor (mg/L as orine (mg/ ts: Down was nine (mg/ NISMS: Lampetra: Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l inated, aer ord bet orstanta egon—Ce	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	isoped off da for lest was Total Ammonia-N	Comments (including tank #
Water Qu Hardness Total Chl Treatmen of Alution of TEST ORGA Species: Source: Acclimat Date Mear	ality: Cor (mg/L as orine (mg/ ts: Down was nine (mg/ NISMS: Lampetra: Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l nated, aer ard bet constanta DO (mg/L)	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	Alkalinity (mg/L)	Total Ammonia-N (mg/L)	Comments (including tank #
Water Qu Hardness Total Chl Treatmen of Alution of Species: Source: Acclimat Date	ality: Cor (mg/L as orine (mg/ ts: Down was nine (mg/ NISMS: Lampetra: Siletz Rivion Data: Temp. (°C)	nd. (µn CaCO: /L, DL echlori s pro grad c sp. ver, Or	nhos/cm) 0.02 mg/l nated, aer ard bet constanta DO (mg/L)	Alk L) ∠007 ated ≥ 24 hours ore lampreys acrated, Bil Age/Size: dar Creek area //////////////////////////////////	alinity (mg/	ed in lab of reeded of the laborates	Total Ammonia-N (mg/L)	Comments (including tank #

Test Volume (mL): 2.8 L

	EY SURVIVAL RANGE-FINL	ING TEST
Test No. 686-434 Out Hold to	**** 1	
Lest No. 686-8 Client	Windward	Investigator
concentrations are nominal.	s recommended): <u>8.0, 0.8, 0.08,</u>	0.008 and 0 mg/L (control) All

Replicates/treatment: 1

Organisms/treatment: 5 (5/repl) Temperature (°C) 12 ± 1

Test water changes: <u>one</u>, at 48 hours Aeration during test:

Test Duration: 96 hr Feeding: None.

11-10-06 643 Light intensity (ft.c.): 534 Photoperiod (L/D): 16/8

Beaker Placement: Stratified randomization

Randomiza	tion chart:		Location	ı: Room 1	
8.0	Ø	08	0.08	0.008	

STOCK SOLUTION PREPARATION:

TEST SOLUTION PREPARATION:

Stock lindane solution is the 8.0 mg/L test concentration.

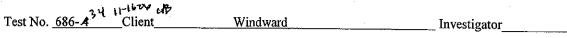
370 mL of 8 mg/L lindane is then diluted to 3,700 mL this is the 0.8 mg/L concentration.

This process is repeated for the 0.08 and 0.008 mg/L concentration.

After all solutions are mixed, 500 mL is removed for chemistry samples.

LOADING (g/L):

(weigh and measure length of controls at end of test)


	*
Length (mm)	Weight (g)
59	0,2/
58	0.27
68	0.37
20	0.43
18	0.79

0-43 g/Fishx5 Fish -2-8L= 0-77

043 0.21 12 15) 15)

Page 2 of

Revised 11/8/06

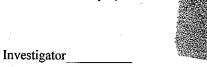
WATER QUALITY DATA SHEET

DAY 0 (11 /9 /02) 15/631

DAIU		ر در	7 044					·
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
8.0	12.2	7.3	10.4	115	<i>5</i> l	40	5	ALL FISH quiescent
0.8	12.2	7.3	10.2				5	
0.08	12.3	7.2	10.2				5	
0.008	12-1	7,2	10.4				ナ	
Control	12.2	7.2	10.2	115	51	40	5	·

NOTES: Sample new solutions at each concentration and ship to CAS.

DAY 1 (11 /10 104) 03


	16 150 1	ve, v.,						
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
8.0	121	7.5	10-1			o de la companya de l	0(50)	
0.8	121	74	10-2				5	quescent
0.08	12-2	73	105				5	
0.008	122	7-3	10.2				5	
Control	121	73	10.4			2.00	5	

DAY 2 (11/11/06)

DAIZ	111/11/	06) 1						
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
8.0	122	75	10-4	120	51	40	0	
0.8	12-2	74	10.5				5	GUITSUT
0.08	12-2	7.4	104				5	
0.008	12.1	7.4	10.8	and in the same		7. DEP	Ĵ	·
Control	122	7.3	10.6	120	51	4/0	5	

NOTES: Sample new and old solutions at each concentration and ship to CAS.

an markintle	
Test No. 686-434 OKBII-1606 Client	Windward

WATER QUALITY DATA SHEET

DAY 3 (11 / 12 / 06) 652 /562

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
8.0	12.7	7.6	10.4				-0	
0.8	12,6	7.6	10.2				5	all quiescut
0.08	12.8	7.6	10.3			200	5	
0.008	12.8	7,5	10.3		normania An Articles	3 E 6 E 5	5	
Control	12.6	7.5	10.4				5	

DAY 4 (11/13 kg) 45

DAXA	*****	/						•
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
8.0	121	74	10.3	115	51	40	-0	
0.8	12-2	73	10·2				5	Kunny Flory Sheady much
0.08	122	23	10.4				5	Zwamd, 3 Everti
0.008	123	3~3	10-3				5	normal
Control	121	72	pz	115	51	40	5	4

NOTES: Sample old solutions at each concentration and ship to CAS. Weigh and measure lengths on control animals.

Test No. 696 134 OUGUTER

Windward

Investigator

NAS Sample	Des	cription	.		***	
#	Day	Conc. (mg/L)	Date	Time	Initials	Comments
07856	Day 0	8.0	11-9-06	1440	LT143	SoomL
07866	Day 0	0.8			1017	300 110
07876-	Day 0	0.08				<u> </u>
07886	Day 0	0.008				800 mL
07890	Day 0	control	. 🔻	V		1,000 mL
08156	Day 2-old	8.0	11-11-06	1635	Wh	1,000,56
08160	Day 2-old	0.8	1		<u> </u>	7 - 00 ; 7 - 0
08176	Day 2-old	0.08			- -	
08186	Day 2-old	0.008				
08196	Day 2-old	control		Þ	-	<u> </u>
08206	Day 2-new	8.0	11-11-06	1600	443	Swar
08216	Day 2-new	0.8	- 	,		5000
03226	Day 2-new	0.08			1	
08234	Day 2-new	0.008				200
08246	Day 2-new	control	₩	7		1 50000
08456	Day 4	8.0	11-1300	1710	i2177	1,000mL 1,000mL
03460	Day 4	0.8	, , , ,		<u> </u>	7000
08476	Day 4	0.08			_	
08486	Day 4	0.008		1		
08496	Day 4	control	4	4		₩
		····			1	

Test N	No. <u>686-</u>	<i></i> `	Client_		Windward				
	DY MAN	AGEME	NT:			a	a		10
	Client:				ıl, 200 West Me	rcer Street,	Suite 401, Se	attle, WA 981	19
C	Client's St	udy Mon	itor: <u>N</u>	Is. Helle A	<u>Andersen</u>				<u> </u>
T	esting La	boratory:	North	iwestern A	Aquatic Science	s		•	
T	est Locat	ion: Nev	vport L	aboratory					
				_		e 47			and the second
	Projec	t Manage	er/Stud	v Director	G.A. Buhler	GU			
	OA O	fficer: L.	K. Nei	meth		1.			
	-					3.			
	4.					5.			
e	Study Sch	adule:					· · · · · · · · · · · · · · · · · · ·		
	Tost E	cuuic. Doginning	. 1	1-16-26	1445	Test Endi	ino. #/	20036 /	(60°)
	1620 1	ocgnumig	·	. , ,		1050 Emax			<u> </u>
me ca	n na á mhiti	DTAT.							
	[MATE	KIAL:	D:!-		. مدا	1	1 421	5 544 /	ned 012
	Descriptio	n:	Diazin	ion <i>C</i>	vem Ser	vice c	37 11/18	L" FIF (1	ovily 98.27
	NAS Sam	•							
Ι	Date of Pr	reparation	ι:	·					
_			:						
									•
DILU	UTION W	VATER:							
Γ	Descriptio	n: City	of Nev	vport tap	water				
T	Date of Pr	eparation	/Collec	ction:	11-16-0	o			<u> </u>
τ	37-4 O	ality: Cor	nd (un	nhos/cm}	fia.	pH 🗲	2		
	water uni								
. I	Water Qua Fardness ((mg/I as	CaCO.	.) É) Alk	alinity (mg	L as CaCO ₂	30	
·	Hardness ((mg/L as		3) 5	<u>/</u> Alk	alinity (mg/			·
H T OF A: TES	Hardness (Fotal Chlo Freatment Clubion (T ORGA	(mg/L as orine (mg ss: <u>D</u> wake w NISMS:	CaCO: /L, DL echlori es pr	3) 5	Alk L) — ated ≥ 24 hours before tempor thy derated.	eus were r	ecewedin- waterneed		ed off daily u
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as orine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	3) 5 0.02 mg/linated, aerepard epard constant	Alk L) Alk L) ated ≥ 24 hours before tampr fly derafed. Age/Size: Age/Size: dar Creek area	eys were r Bilution	ecenedin- waternee Leetes		
H T OF d: TES? S	Hardness (Fotal Chlo Freatment Forga FORGA Species: <u>L</u> Source:	(mg/L as prine (mg/s: Des fer was NISMS: Lampetra Siletz River was nicked with the control of th	CaCO: /L, DL echlori echlori sp. sp. ver, Or	3) 5 0.02 mg/linated, aer epard constant	Alk L) — Alk ated ≥ 24 hours before tampr the derafed. Age/Size: dar Creek area	eus were r Bilution	ecewedin- waterneed	Hulab, topp ded for kst	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments (including tank :
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	els weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments (including tank :
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	eus weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments (including tank :
H T OF d: TES? S	Hardness (Total Chlo Treatment Lucker o T ORGA Species: <u>L</u> Source: Acclimati	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	eus weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments (including tank :
H T OF d: TES? S	Hardness (Fotal Chlor Ch	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	eus weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments (including tank :
H T OF d: TES? S	Hardness (Fotal Chlor Ch	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	eus weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments (including tank :
H T OF d: TES? S	Hardness (Fotal Chlor Ch	(mg/L as prine (mg/s:	CaCO: /L, DL echlori es pr and (sp. ver, Or	a) 5 0.02 mg/linated, aer epa.ad constant egon—Ce	Alk L) ated ≥ 24 hours before tamor the derafed. Age/Size: dar Creek area ling Mar Conductivity	eus weer Bilution Ommo	eceved in- water need Coetes Alkalinity	Hulab, topp ded for kst Total Ammonia-N	Comments (including tank :

Test No. 686-35 Windward Client Investigator

TEST PROCEDURES AND CONDITIONS:

Test Concentrations (10% series recommended): 40, 4.0, 0.4, 0.04 and 0 mg/L (control) All

concentrations are nominal.

Test Chambers (description): 2.5 gallon glass aquaria covered with plastic wrap and plastic lids

Test Volume (mL): 2.8 L

Replicates/treatment: 1

Organisms/treatment: 5 (5/repl) Temperature (°C) 12 ± 1

Test water changes: one, at 48 hours Aeration during test: Yes

Test Duration: 96 hr

Photoperiod (L/D): 16/8

Light intensity (ft.c.): 64

Beaker Placement: Stratified randomization

Randomization chart: Location: Room 1

Ø 0-4 4.0 40 0-04

STOCK SOLUTION PREPARATION:

TEST SOLUTION PREPARATION:

Stock diazinon solution is the 40 mg/L test concentration.

370 mL of 40 mg/L diazinon is then diluted to 3,700 mL this is the 4.0 mg/L concentration. This process is repeated for the 0.4 and 0.04 mg/L concentration.

After all solutions are mixed, 500 mL is removed for chemistry samples.

LOADING (g/L):

(weigh and measure length of controls at end of test)

Length (mm)	Weight (g)				
70	0-41				
90	0,90				
70	0-38				
74	0.53				
68	0.40				
74	0.52				

0.52g 153h #5f3h=2-8L= 0-93g/L

0.22 15)

Page 2 of

Revised 11/8/06

Page 28 of 73

Test No. <u>686-</u>	35 Client	Windward	Investigator	÷
----------------------	-----------	----------	--------------	---

WATER QUALITY DATA SHEET

Conc. (mg/L)	Temp (°C)	рН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
40	122	7.3	10.6	115	51	30	5_	Tetanors for 1/With gots
4.0	121	7-3	10-6				5	Normal
0.4	122	7.3	10.5		.44.14		5	1
0.04	12-1	7-3	10.7	1. 有数据 1. 数据数据			5	
Control	121	7-3	100	115	51	30	5	

NOTES: Sample new solutions at each concentration and ship to CAS.

DAY	1	Δī	1	Die	١.	M
MAI	J.	11/	- /	1 T / CAL	91	4

Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
40	11.8	7-(106				5	greseent
4.0	11-8	7-1	10-5			and the second	5	Twitchmy
0.4	11.7	21	10.5				5	provel
0.04	11-8	71	101				5	1
Control	11-8	71	105				5	*

DAY 2 (11/18/11) B

DAIZ	11/10	a 1/						
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
40	11-9	7-3	104	170	51	30	0(50)	
	120	7-3	10.3				5	Tetanos devonti
	11-9	7.2	105				5	i
0.04	11-7	22	12/6				5	6
Control	11-8	7.2	100	125	51	30	5	Normal

NOTES: Sample new and old solutions at each concentration and ship to CAS.

Test No. 686-35	Client	Windward	T	
1031 NO. <u>000-33</u>	CHem	w mara	Investigator	

WATER QUALITY DATA SHEET

DAY 3 (11/19/	06						
Conc. (mg/L)	Temp (°C)	рН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
40	11.8	7-3	bb	10 (120 m) (120 m) (120 m) (120 m)			Ø	
4.0	11.7	2.3	124				5	Tuitching bernitio
0.4	11-8	7-3	10.3				5	
0.04	118	7-3	10.3				5	*
Control	119	7.3	10,7,				,5	normal

DAY 4 (11/201	U(0)					4	
Conc. (mg/L)	Temp (°C)	pН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	# Survivors	Comments
40	119	7-3	10.5	120	51	30	0	
4.0	11-8	7.3	10-6				5	tustiling & corretio
0.4	11-8	7-3	105				5	//
0.04	11-9	7-3	10.3	100 (100 (100 (100 (100 (100 (100 (100			5	A
Control	120	73	104	120	51	40	5	pormul

NOTES: Sample old solutions at each concentration and ship to CAS. Weigh and measure lengths on control animals.

control animals.

$$119721051195132$$
 50
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1

Test No.	686- 35	Client	Windward	Investigator
				MI VOSLIZATOI

WATER SAMPLING RECORD

NAS Sample		cription		T		T
##	Day	Conc. (mg/L)	Date	Time	Initials	Comments
08556	Day 0	40	11-16-20	1325	473	STOML
08560	Day 0	4.0	i	,		30.00
08576-	Day 0	0.4	-	-	1	
08586	Day 0	0.04				8wnL
8596	Day 0	control	4			
08606	Day 2-old	40	11-1800	1330	\psi_	1000mL
086/6-	Day 2-old	4.0		1) 1	<u>A3</u>	100000
08626	Day 2-old	0.4				
08636	Day 2-old	0.04				
08646	Day 2-old	control		1		
08656	Day 2-new	40		1320		<u> </u>
28466	Day 2-new	4.0		1,,,,,		52000
08676	Day 2-new	0.4		-+		
08686	Day 2-new	0.04				<u> </u>
07696	Day 2-new	control	-	+		8 201-10
38706	Day 4	40	11-2000	-1/	-)	1000ml 1000ml
18715	Day 4	4.0	11 200	1310	U3	1000ml
	Day 4	0.4				<i> </i>
	Day 4	0.04	-+			
	Day 4	control	 +			—— J

TEST DESCRIPTION, MONITORING, AND RESULTS BENCHSHEETS – TEMPERATURE TESTS

st No. <u>6</u>	86- 36	Client		Windward			Investigato	r
UDY M	ANAGE	MENT:						4
Client:	Wir	ndward Er	vironment	al, 200 West Me	ercer Street,	Suite 401, Se	eattle, WA 981	19
			Ms. Helle					
				Aquatic Science	S			
			Laboratory					*
		•	_		15/2		•	
Pr	oiect Ma	nager/Stu	dy Directo	r: <u>G.A. Buhle</u>	r			
O	A Officer	: L.K. N	emeth		1. 6.1	IRISSH	281 6.31	
2.	Great He	teliston	GH		3.			
4.	21-3 1-	700/11/2-1	<u></u>		5.			
	Schedule				··· ···	,		
T	est Begins	ning:	17-1-00	1500	Test End	ing:	12-506	, 1440
•		······5·	2/04					
ST MA	TERIAL	•						•
Descri		4•						
	Bample N	٥.						
	f Prepara							
	_							
		<u> </u>						
LUTIO	N WATE	D.					•	
			wport tap	watan				
Descri	puon: £Deemeses	tion /Calle	wport tap	water				
Date 0	i Prepara	Cond (w	mb ag/ama	173000		2 7		
water	Quanty:	Cond. (µ	mnos/cm)_	736 51 Alk L) 2007	_ pri	<u> </u>	. 20	
Hardne	ess (mg/L	as CaCO	3)	AIK	annity (mg	L as CaCO ₃)	
Total	Intorine (mg/L, DI	. 0.02 mg/	L) <u>20.02</u>				
Treatn	nents:	Dechlor	nnated, aei	rated ≥ 24 hours	 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
								
	GANISM			. (0)		[00		
Specie	s: <u>Lampe</u>	<i>tra</i> sp.		Age/Size:	ginprio	coers		
				dar Creek area				
	nation Da			holding .		1	T	
Da	te Tem		DO	Conductivity	Hardness	•	Total	Comments
	(°C)	(mg/L)	(µmhos/cm)	(mg/L)	(mg/L)	Ammonia-N	(including tank #)
					ļ		(mg/L)	
<u> </u>								
<u> </u>								
						·		
 				ļ	 			
<u> </u>								
<u> </u>					-			
		-		<u> </u>	<u> </u>			
<u> </u>			<u> </u>	1				
					<u> </u>			
Me	an				<u> </u>			
S.I),						1	
(N)								· · · · · · · · · · · · · · · · · · ·
[[11]	,	1	1	1	1	[1	I

		ar .	Windward	Investigator
Tect No	686-36	Client _	Willuwaru	

climatio	m Data:	12°C	See U	Conductivity	Hardness	Alkalinity	Total	Comments
Date	Temp.	pН	DO (mg/L)	(µmhos/cm)	(mg/L)	(mg/L)	Ammonia-N (mg/L)	(including tank #)
		<u> </u>						
		 -	 				· ·	<u>.</u>
		<u> </u>	ļ		 	 		
		<u> </u>				 		
		<u></u>			 	 		
			·[<u> </u>	ļ		
						<u> </u>		
					<u> </u>		<u> </u>	
		 	<u> </u>		1		<u> </u>	
								
	<u> </u>	┼	 -				1	
		 	 					
		<u> </u>	<u> </u>			 		
					 	 		
		l		<u> </u>	 			<u> </u>
			İ					
			1					<u> </u>
Mean	 	 	 		i		<u> </u>	
	-	+	 				<u> </u>	<u> </u>
S.D.		-	+		<u> </u>			

		Windmord			Investigator_		
Test No. <u>686-36</u>	Client	Windward					
Test Chambers (Test Volume (m Organisms/treatu Test water chang Feeding: None.	ons (10% series r description): 2.5 L): 2.8 L ment: 4 (5/repl) ges: one, at 48 h Test Durati	ecommended):u gallon glass aquat Replicates/treat Temperature (°C) ours Aeration d on:96 hr	ment: 1 12 ± 1 and uring test:	d 17 ± 1 Yes			
Randomiza	tion chart: 17°C	Location: Room	n 3 Lig	ht intensity (ft	.c.): <u>75.0</u>	としてもし	
B	A D	2			-		
Randomiza	ition chart: 12°C	Location: Roo	m 4 Lig	ht intensity (ft	i.c.): <u>55,6</u>	12-100	
A	DL	B					
TEST SOLUTION	DDFPARATIO	N:					
2.8 liters of diluti	on water per tan	k. US 12-	1-06				
LOADING (g/L): (weigh and measur	e length a replica	te at end of test)					
Length (m)	m) Weight (g)						·
71	0.4	6 7	0.59 8	lfish x5 l	75h = 2.8	1- 1-05	-g/L
\$ 2 \$ 2 \$ 3 7 \$ 3 7 \$ 3 7 \$ 12°C (5)	0.3	13 13					
Length (III	m) Weight (g	<u>7 </u>					
93 72 40	0-6 0-36	<u>6</u>	0.55 glf	ish x 5 Fi	347286	_ = 0.9	8811
¥ 100	0.3	-55					
NOTES:		15)			•		

Test No. 686-36	Client	Windward	Investigator
Test No. 686-36	Client	Windward	Investigator

WATER QUALITY DATA SHEET

DAY	0.6	2/	;	100)	W
13 A Y	10 4 7	7. 1	Į.	11/10/1	~ .7

	Conc. (mg/L)	Temp (°C)	pH	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	A	Surv B	ivors C	D	Comments
ļ	17°C	14.5	7.3	9.7	125	5)	30	5	5	5-	\$	slighty more active
Ì	12°C	12-6	73	11.0	120	51	30	5	- 5	5	5	

DAY 1 (i	2/2/6	<u>(,) W5</u>							i -		
Conc.	Temp	рН	po	Conductivity	Hardness	Alkalinity		Surv	ivors		Comments
(mg/L)	(°C)	P1.	(mg/L)	(µmhos/cm)	(mg/L)	(mg/L)	Α	В	С	D	
L	<u> </u>										51:24 Sy once on fre
17°C	120	7-2	1.0	135			5	5~	5	5	The 120 Fish
· · · · ·	ļ <u>.</u>	 								_	
12°C	122	24	11.2	120			5	5	5	5	

Conc. (mg/L)	Temp (°C)	р Н	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	A	Surv B	ivors C	D	Comments
17°C	16.5	6.8	9,1	140	51	30	5	5	5	5	≈ 3/4 H20 D
12°C	12.1	6.9	10.2	125	51	30	5	5	5	5	2 3/4 H2OA

DAY 3 (1214 106) 043/632

Conc. (mg/L)	Temp (°C)	pH	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	A	Surv B	vors C	D	Comments
17°C	17-3	7.4	3,8	130			5	5	3-	5	flighty more onthe
12℃	12-2	71	10.4	120			5	5	5	5-	

DAY 4 (12151	(U)_(U)	<u> </u>							$-\neg$	
Conc.	Temp	pН	DO	Conductivity	Hardness	Alkalinity	ļ	Surv	ivors		Comments
(mg/L)	(°C)	pri	(mg/L)	(µmhos/cm)	(mg/L)	(mg/L)	A	В	С	D	
	_	 								_	
17°C	A.0	10	9.0	140	١٤١	30	5	5	5	5	
 	+	- a				30	<	\ <u>-</u>	<u>,</u> —		ļ
12°C	12-5	47	10.60	130	<u>י</u> כ ן		_'_	>			

1	Ý
5	Ŋ
(N)

17	12	13	12	17	n	17	12	51	30
169	23	7-1	72	9/	10.7	134	123	<i>2)</i>) ·
0.4	ar	0.2	0.7	0.)	104	7	4	(6)	i w)
(5)	(5)	(3)	j5)	15)	(13)	(3)	15)		i wj

Page 4 of Page 35 of 73

Revised 11/8/06

Γest No.	686- 3	7 .C	lient_		Windward	 		_ Investigator_	
STUDY	MANA	GEME	NT:		200 West Mor	nor Street S	nita 401 Sea	ttle WA 9811	9
Clie	nt:	Windwa	<u>rd Envi</u>	ronmentai	, 200 West Mer	del Queer, o	une 401, 500	ittio, WIX JOIII	
Clie	nt's Stu	dy Moni	tor: <u>M</u> :	s. Helle A	ndersen				
Test	ting Lab	oratory:	North	western A	quatic Sciences				
Test	t Locatio	n: New	port La	boratory					•
Lab	oratory'	s Study I	Personr	nel:	/	AS			
	Project	Manage	r/Study	Director:	G.A. Buhler			7.11	
	QA Of	ficer:_ <u>L.</u>]	K. Nen	<u>ieth</u>	G.//. Dunter	1. 6.3 11	<u>rissarr</u>	- 601	
	2. Grea	Hutch.	301 6	<u> </u>		.3		·	
	4.	J				. ٠			
Stud	dy Sche	dule:			20		17	-12061	540
	Test Be	ginning	: 12	1806	1430	_ Test Endi	ng:	10001	
TEST N	MATER	IAL:							
	scription								
	S Samp								
		paration							·
		-	•						
DILUT	TON W	ATED							
			of Nex	port tap v	vater				
Des	scription	I. <u>CILY</u>	/Collec	tion:	12-7-16				
Dai	te of Pre	paration	-d (um	hos/cm)	12-700	nH =	7.7	·	
Wa	iter Qua	lity: Cor	1α. (μπ	mos/cm/	Alle	alinity (mg/	Las CaCO ₂	30	
Ha	rdness (1	mg/L as	CaCO₃)	51 Alk	aimity (ing/	B as caces	/	
To	tal Chlo	rine (mg	L, DL	0.02 mg/1	<u> </u>				•
Tre	eatments	s:D	<u>echlori</u>	nated, aer	ated ≥ 24 hours				
TEST (ORGAI	NISMS:			, (0:	a m m	ace Lea		
Sp	ecies: \underline{L}	ampetra	sp.		Age/Size:	_ 0/0////	overes		
So	urce:	<u>Siletz Ri</u>	ver, Or	<u>egon—Ce</u>	dar Creek area				
· Ac	climatic	n Data:	22°C		holding da		A 111224	Total	Comments
ſ	Date	Temp.	pН	DO	Conductivity	Hardness	Alkalinity	Ammonia-N	(including tank #)
		(°C)		(mg/L)	(µmhos/cm)	(mg/L)	(mg/L)	(mg/L)	(morading tank ")
								(mg/L)	<u> </u>
						<u> </u>			<u> </u>
[Ì			<u> </u>			
							ļ		
			 			1		<u> </u>	
	 		-		<u> </u>				
		 	 	<u> </u>		-			
	ļ	<u> </u>	 			 	 	+	
	ļ		├ ──	<u> </u>	<u> </u>		 	 	<u> </u>
			<u> </u>		1	 	 		<u> </u>
			<u> </u>			 	 	 	
					<u> </u>				
	—								
	1		,						
	Mean								
	Mean S.D.								

m 4 3 1 -	606 27	Client	Windward	Investigator
Test No.	686-3/	Client	TT HIGHTIG	

Date	Temp.	pH	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	Total Ammonia-N (mg/L)	Comments (including tank #)
							-	
								·
							<u> </u>	
	-				<u> </u>		<u> </u>	
		 			<u> </u>			
								· ·
							<u> </u>	
							 	
.,						<u> </u>		
Mean							ļ	<u> </u>
S.D.						,	<u> </u>	
(N)			T		1			<u></u>

Windward Investigator Test No. 686-37 Client TEST PROCEDURES AND CONDITIONS: Test Concentrations (10% series recommended): 0 (control). Test Chambers (description): 2.5 gallon glass aquaria covered with plastic wrap and plastic lids Test Volume (mL): 2.8 L Replicates/treatment: 1 Organisms/treatment: 4 (5/repl) Temperature (°C) 12 ± 1 and 22 ± 1 Test water changes: one, at 48 hours Aeration during test: Yes Test Duration: 96 hr Feeding: None. Photoperiod (L/D): 16/8 Beaker Placement: Stratified randomization Light intensity (ft.c.): 68-2 /2-806 M Randomization chart: 22°C Location: Room #1 A Light intensity (ft.c.): 49-5 12-8-26 M Randomization chart: 12°C Location: Room #4 0 TEST SOLUTION PREPARATION: 2.8 liters of dilution water per tank. LOADING (g/L): (weigh and measure length replicate at end of test) 22°C Weight (g) Length (mm) 0-56 0.4491Fishx5Fish=28L= 0.7981L 0.32 0.3 0.48 0.51 70 044 is) (5) 0.48 gl fish x 5 Fish = 2.8 L= 0.86 glL Weight (g) Length (mm) 0.11 0-30 80 0.40 0.48 70 0.55 71 70 0.48 0.14 NOTES: (5) 15)

Test No. 686-37	Client	<u>Windward</u>	Investigator
-----------------	--------	-----------------	--------------

WATER QUALITY DATA SHEET

DAY 0	12	12 1	M	14
-------	----	------	---	----

Conc. (mg/L)	Temp (°C)	рН	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	A	Surv B	ivors C	D	Comments	
22°C	218	7.3	8-8	140	51	30	5	5	5	5		
12°C	11.9	24	10.6	115	5-1	30	5	5	5	5		

	DAY 1 (19	2/9/0	6)651	164		·				H	1	
ſ	Conc.	Temp	pН	DO	Conductivity	Hardness	Alkalinity		Surv	ivor <u>s</u>		Comments
	(mg/L)	(°C)	p	(mg/L)	(µmhos/cm)	(mg/L)	(mg/L)	Α	В	С	D	
ł		 -								5	5	
	22°C	23.0	6.9	8.2	140			ז	<u>م</u>	3_		
}	 	 			:20			~	~	~	5	ļ
- 1	12°C	12,3	7.0	10.1	120						<u> </u>	

1
ents
-

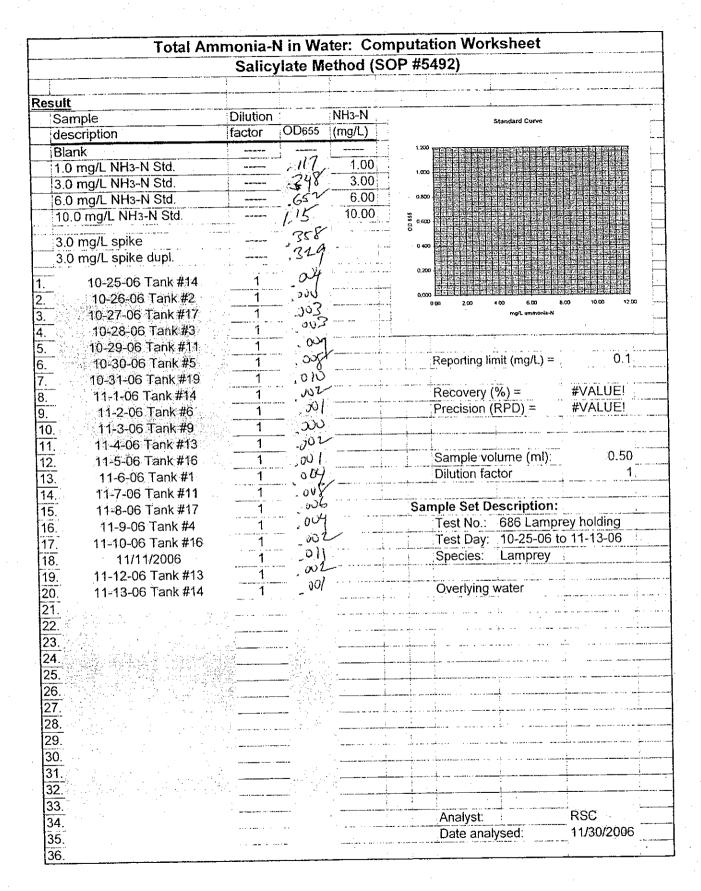
	DAY 3 (/)	און עז	ر المعمال نطا	1(0)						1		
ĺ	Conc.	Temp	рН	DO	Conductivity (umhos/cm)	Hardness	Alkalinity		Surv	ivors		Comments
	(mg/L)	(°C)	'	(mg/L)	(µmnos/cm)	(mg/L)	(mg/L)	A	В	C	D	
ŀ				<u> </u>				~	_			
	22°C	21.8	7.2	8.2	160				,	> _)	
Ì	12°C		70	10.9	,20			5	5	_	_	
- 1	120	12.1	7.0	10.9	130		3.0	<u>i</u>				

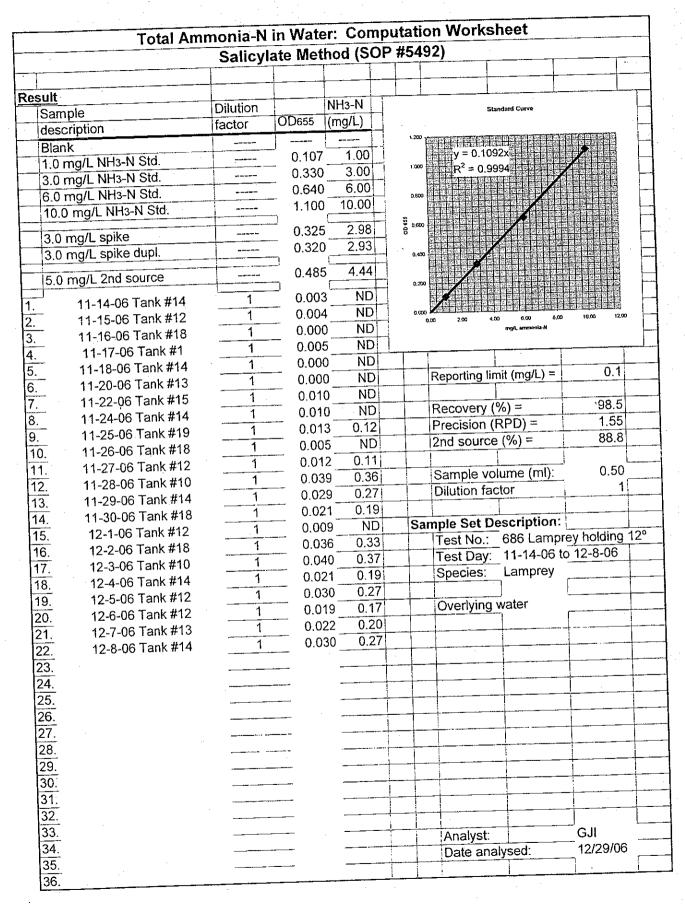
DAV	4 (101	11/00)	13
HAY	41		1114331	<i>u</i> ,

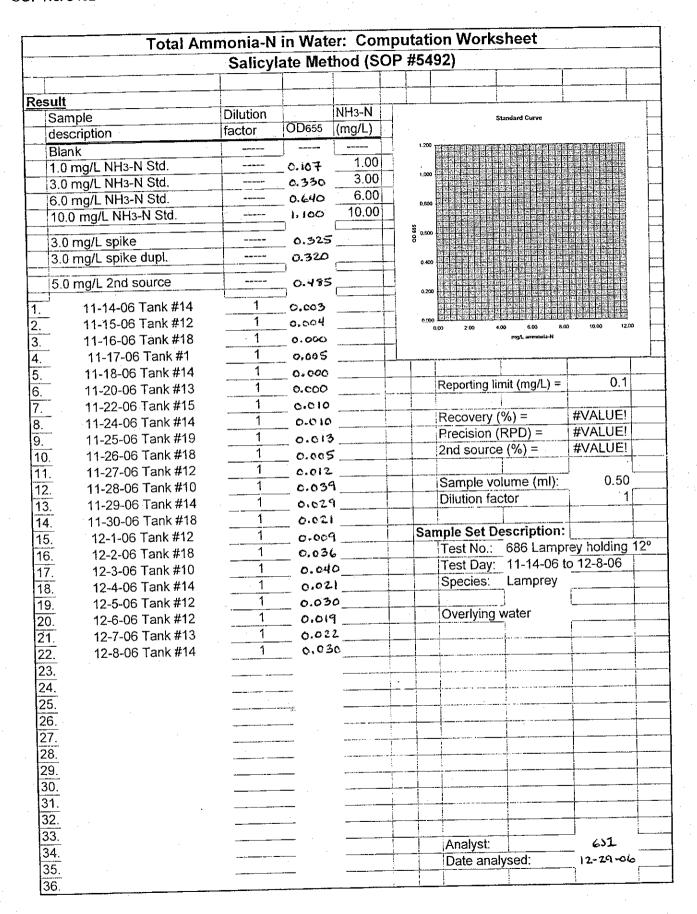
	Conc. (mg/L)	Temp (°C)	pH	DO (mg/L)	Conductivity (µmhos/cm)	Hardness (mg/L)	Alkalinity (mg/L)	A	Surv B	vors	D	Comments
F	22°C	22-2	7,2	8.3	150	51	40	5	4109	5	5	
			<u> </u>	10.8	125	51	40	5-	>_	5-	5	

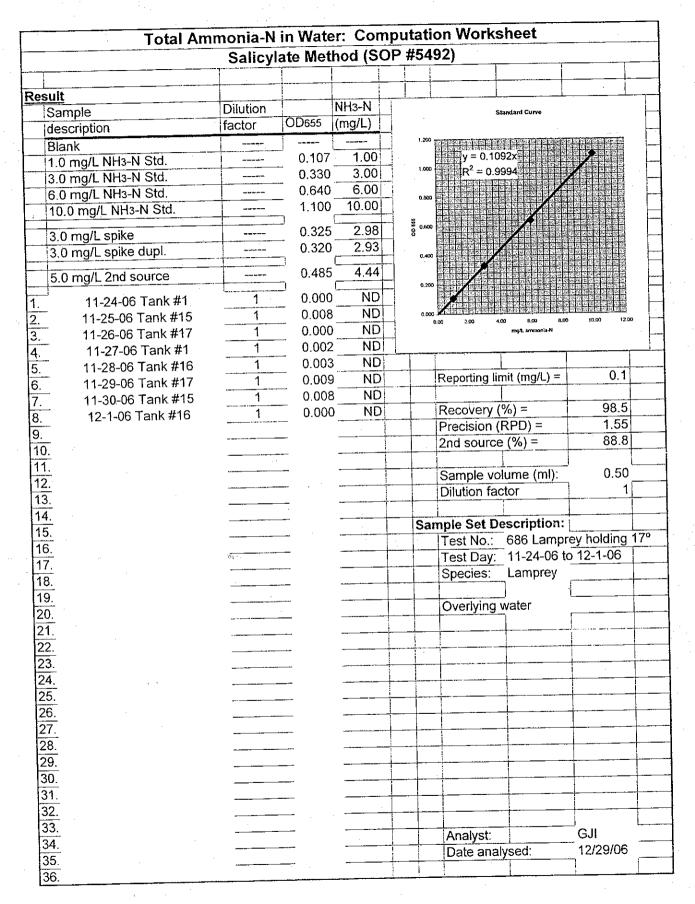
Ý	
3D	
(N)	

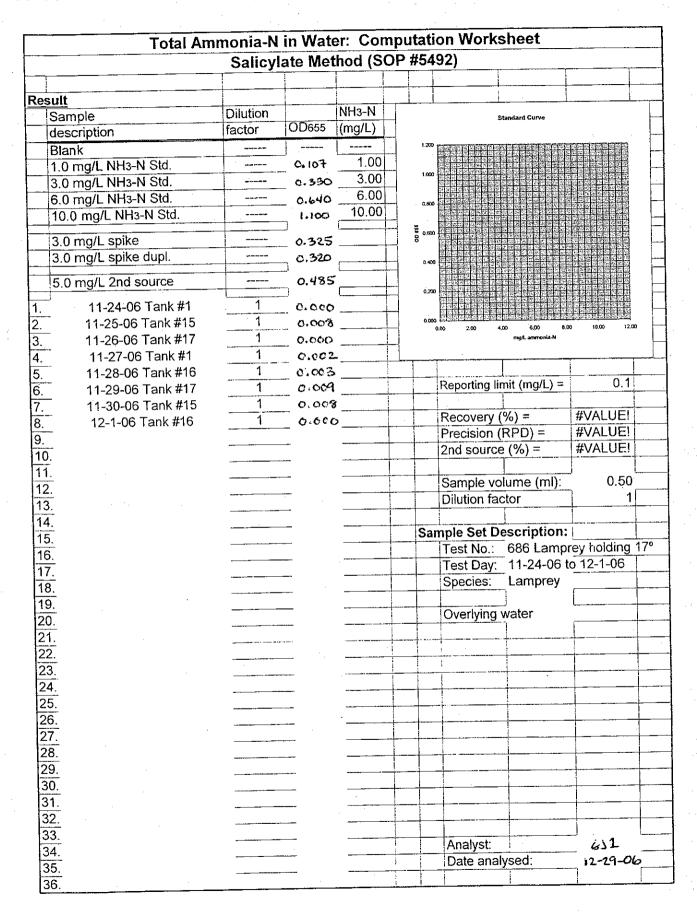
12/12241	22412	22 12	12	12	w	
22-3 12.2 72 18	183 10-5	146 120	51	5)	37	33
22 12 24 1	7 (5) (5)	9 8	(3)	1	(2 (3)	
27 1.1	4					l l

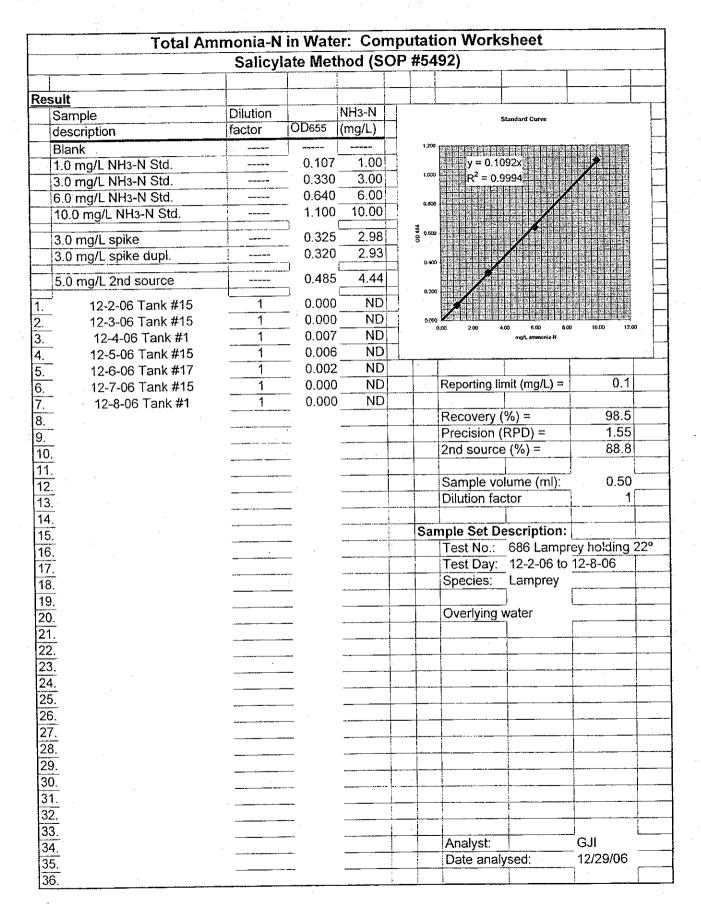

Page 4 of

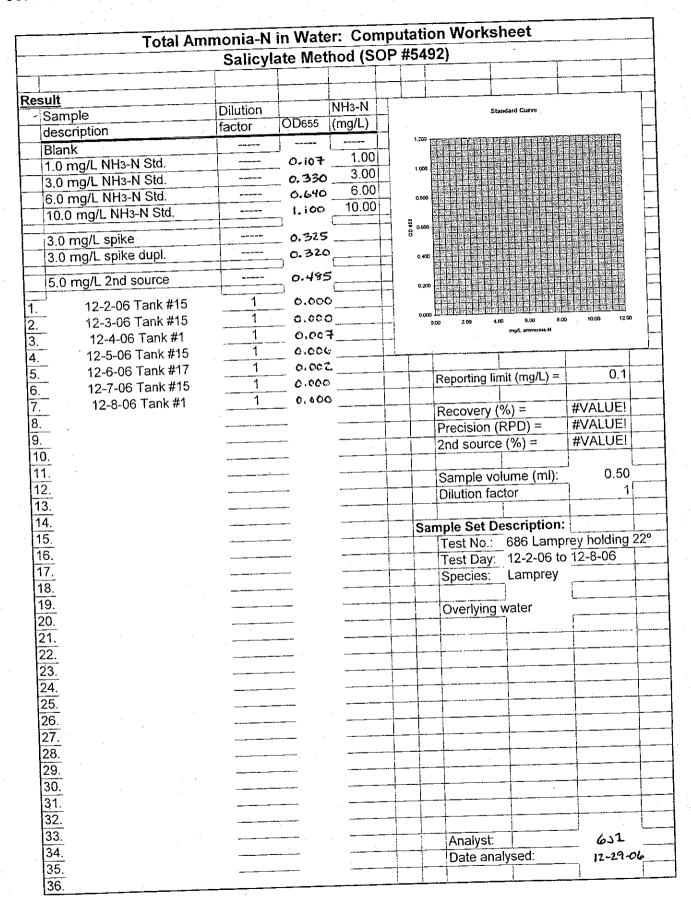

Past 39 of 73


Revised 12/7/06


AMMONIA BENCHSHEETS AND ANALYSIS


I QIAI AII					ion Worksheet	-
	Salicy	/late Me	thod (SC)P #54	192)	
sult Sample	Dilution	<u></u>	NH3-N	····		
description	factor	: :	(mg/L)		Standard Curve	
Blank				1,400 -		
1.0 mg/L NH3-N Std.		0.117	1.00	1,200		
3.0 mg/L NH3-N Std.		0:348	3.00	1.200 ;		
6.0 mg/L NH3-N Std.		0.652	6.00	1.000		
10.0 mg/L NH3-N Std.		1.150	10.00	g 0.800		
		3		5 0.600		
3.0 mg/L spike		0.358	3.15			
3.0 mg/L spike dupl.		0.329	2.90	0 400 -		
10-25-06 Tank #14	1	0.004	ND	D,200		
10-26-06 Tank #2	1	0.000	ND	0.000		0 1000 1200
10-27-06 Tank #17	1	0.003	ND	0.	,00 2.00 4.00 6,00 8.5 mg/l, ammonia-N	d 10.00 12.00
10-28-06 Tank #3	1	0.003	ND			
10-29-06 Tank #11	1	0.009	ND	:		
10-30-06 Tank #5	1	0.008	ND	1	Reporting limit (mg/L) =	0.1
10-31-06 Tank #19	1	0.010	ND			:
11-1-06 Tank #14	1	0.002	ND		Recovery (%) =	100.8
11-2-06 Tank #6	1	0.001	ND		Precision (RPD) =	8.44
i. 11-3-06 Tank #9	1	0.000	ND			
. 11-4-06 Tank #13	1	0.002	ND			•
. 11-5-06 Tank #16	1	0.001	ND		Sample volume (ml):	0.50
i. 11-6-06 Tank#1	1	0.004		:	Dilution factor	1.
1. 11-7-06 Tank #11	1	0.008				
5. 11-8-06 Tank #17	1	0.006			ple Set Description:	ه محمده د مروان
11-9-06 Tank #4	111	0.004			Test No.: 686 Lampre	
7. 11-10-06 Tank #16	1	0.002		at the same of the same of	Test Day: 10-25-06 to	11-13-06
11/11/2006	1	0.011	the second recording		Species: Lamprey	
9 11-12-06 Tank #13	1	0.002			ا خست در در و در و در و در و ورس ما در پی	· · · · · · · · · · · · · · · · · · ·
). 11-13-06 Tank #14	11	0.001	ND	<u></u>	Overlying water	
1						
<u>2.</u> 3.				11		<u></u>
				<u> </u>	ili. 1	
<u>4.</u>						<u> </u>
<u>5.</u>						
4. 5. 6. 7.						
	. · · <u> </u>			1		
8.					Notes that the second section is a second second section of the second section of the second section of the second section of the second section sec	
<u>9.</u> 0.	·			·	nome a de mante correstera	م المستدد المس
<u>80.</u>		·	· · · · · · · · · · · · · · · · · · ·			
	. \$ <u></u> -			- 		
<u>32</u>	? <u>-</u>		<u></u>	. <u>.</u> -	ا معام میں استان سے ایک اور اور اور اور اور اور اور اور اور اور	- · · · · - · · · · · · · · · · · · · ·
<u>33.</u>					Analyst	RSC
<u>34.</u>	٠			 -	Analyst: Date analysed:	11/30/2006
35 . 36.				·	Date allalyseu.	THOURZOOD





TEST DATA ANALYSIS RECORDS

ta c-ry Ventica againsi Laboratory bench sneet disjor sn

Water Quality Data

P686 Lamprey 2006 holding

	Date	Temp	FG	00	Cond	Hard	Alk	NH3	comments
Silatz River	10/17/06	13.6	5.3	8.2	62	26	20		rec'ing data
Water	10/17/06					26			
	10/18/06	12.4	6.0	9.6	95	26	20		rec'ing data
	10/23/06	11.5	6.8	8.4	75	26	20		rec'ing data
	10/24/06	10.6	6.0	8.8	150	51	90		rec'ing data
Siletz River	Mean	12.0	6.0	8.8	96	31	38	•	
Water	SD	1.3	9.0	9.0	39	11	35		
		4	4	4	4	5	4	-	
	Min	10.6	5.3	8.2	62	26	20	ł	
	Max	13.6	6.8	9.6	150	51	06	1	
						-			
Lab Holding									
holding for tests	10/18/06	12.3	7.4	10.7	135	43	50		
31-35	10/19/06	12.5	7.1	10.8	133	51	09		
	10/20/06	12.7	7.5	10.6	120	51	30		
	10/21/06	12.5	7.5	11.1	130	43	30		
	10/22/06		7.1	10.9	125	51	9		
	10/23/06	12.6	6.9	10.8	120	51	30		
					-	1	-		
	10/24/06	12.3	7.4	10.8			20		
	10/25/06		6.9	10.8	130		30		
	10/26/06	12.6	7.4	10.6			50		
	10/27/06		7.0	11.2			50		
	10/28/06		7.1	10.8		:	40		
	10/29/06		8.1	10.8			50		
	10/30/06		8.0	10.4			50	ļ	
	10/31/06		7.8	10.2		43	40		
	11/1/06		7.9	10.3		!	40		
	11/2/06	12.1	8.2	10.3			20		
	11/3/06		7.9	10.8			40		
	11/4/06	11.2	8.0	11.6			40		
	11/5/06	11.6	7.9	11.2	135		20		
	11/6/06	13.2	7.9	13.0			30		
	11/7/06			11.4			20		
	11/8/06	11.5	8.0		125	51	20	\$ 0.1	,
	11/9/06			11.3	-		40		tests 31 - 34 began 11/9/06
holding for test 35	11/10/06	11.7	6.7	11.2			52		
continues	11/11/06			1.1	120	51	40		
	11/12/06	5 11.3		11.0			40		
					i				

์ฮ์

page 48 of 73

			test 35 began 11/16/06				flow off; all tanks fed									test 36 (12C & 17C) began 12/1/06							test 37 (12C & 22C) began 12/8/06								test 36 (12C & 17C) began 12/1/06				-			ACCOUNT TABLET	test 37 (12C & 22C) began 12/8/06	
<0.1	×0.1			<0.1	0.1			<0.1	<0.1	0.1	×0.1	0.1	0.4	0.3			0.3	0.4	0.2	0.3	0.2	0.2	0.3	٥٠.1 د0.1	<0.1	60.1	<0.1	<0.1	6 0.1	٥ <u>.</u>	<u>^0</u> .1		×0.1	0.1	٥. م	<0.1	×0.1	<0.1	×0.1	
40	40	40	50	40	40	40		20	40	20	20	30	20	20	40	40	40	30	40	9	40	40	40	4	20	40	4	20	20	40	40	က္က	30	တ္ထ	40	40	20	20	40	
51	51	51	43	51	51	51		51	51	09	09	51	09	51	09	09	27	51	99	51	09	09	51	51	09	00	09	09	51	09	09	51	21	51	51	51	51	51	51	-
130	125	132	130	117	120	110		125	120	135	140	140	150	140	135	130	130	145	140	140	125	135	120	125	135	140	145	140	140	140	140	145	140	160	155	170	155	150	150	-
11.0	10.9	10.9	11.4	11.3	11.2	11.4		11.2	11.6	11.3	11.2	11.2	11.2	11.2	11.0	11.4	11.2	10.4	10.6	11.2	10.7	10.9	11.0	11.4	10.7	10.2	9.8	9.6	9.4	9.3	9.4	8.8	8.9	8.8	0.6	8.7	8.5	8.8	8.8	
7.6	7.5	7.6		7.6	7.4	7.3		7.2	7.4	7.6	7.6	7.3	7.5	7.4	7.5	7.4	7.3	7.0	7.3	6.9	7.3	7.4	7.4	7.2	7.3	7.5	7.3	7.8	7.7	7.5	7.4	7.3	7.3	7.2	7.2	7.3	7.5	7.4	7.5	
11.4	11.6	11.8	11.4	11.6	11.8	119		11.4	11.6	12.0	11.9	11.6	11.6	11.3	11.7	11.8	11.9	11.8	11.4	11.0	12.2	12.0	12.2	12.2	13.5	14.6	15.5	16.8	16.8	17.0	16.3	16.9	17.9	18.5	19.3	20.4	21.6	21.1	21.9	
11/13/08	11/14/06	11/15/06	11/16/06	11/17/06	11/18/06	11/20/06	11/21/06	11/22/06	11/24/06	11/25/06	11/26/06	11/27/06	11/28/06	11/29/06	11/30/06	12/1/06	12/2/06	12/3/06	12/4/06	12/5/06	12/6/06	12/7/06	12/8/06	11/24/06	11/25/06	11/26/06	11/27/06	11/28/06	11/29/06	11/30/06	12/1/06	12/1/06	12/2/06	12/3/06	12/4/06	12/5/06	12/6/06	12/7/06	12/8/06	
				Interim holding	prior to acclimation	for tomperature	tol telliperature	באליםווויםווים	tomporativa	conjugation to 12C	for test #36	2011 1021 1021					temperature	acclimation to 12C	for test #37					temperature	acclimation to 17C	for test #36						temperature	acclimation to 22C	for test #37						

Page 49 of 73

تن
Œ
≥
ख
õ
Water

Tests 31 - 34: 10/18/06-11/9/06 8				2	3 5 5 5	בשבם	¥	Z H Z	
	Mean	12.3	7.6	10.9	129	48	44		
	SD	0.5	0.4	9.0	2	4	6		
	n	23	23	23	23	23	23	16	
	Min	11.2	6.9	10.2	119	43	30	ľ	
	Max	13.2	8.2	13.0	135	51	90		
		Temp	Н	മ	Cond	Hard	Alk	NH3	
- 1	Mean	12.1	7.6	11.0	128	48	44	_	
10/18/06-11/16/06	SD	9.0	0.4	0.5	5	4	6		
-	n	30	30	30	30	30	30		
	Min	11.2	6.9	10.2	115	43	30	<0.1	
	Мах	13.2	8.2	13.0	135	51	9		
		Temp	Hd	DO	Cond	Hard	Alk	NH3	
	Mean	11.7	7.5	11.3	136	57	44	1	
11/24/06-12/1/06	SD	0.2	1.0	0.2	6	5	7		
	ı.	80	80	80	σ.	00	80	8	
	Min	11.3	7.3	11.0	120	51	30	٧	
	Мах	12.0	7.6	11.6	150	90	50		
	Mean	15.3	7.5	10.0	138	58	44		
11/24/06-12/1/06	SD	1.8	0.2	0.7	9	4	5		
3	r	ω	8	∞	80	∞	00		
	Min.	12.2	7.2	9.3	125	51	40	V	
	Мах	17.0	7.8	11.4	145	9	50		
		Tomp	7 2	2	540	7.07	711.4		
	Mean	118	1	9 0	133.6	חמות	AIR	SHN	
12/2/06-12/8/06 S	SD	4.0	0.2	0.3	0.00	50	SC .	1	
	u	7	7	7	7	^		7	
	Min	11.0	6.9	10.4	120.0	51	30	0.2	
	Max	12.2		11.2	145.0	9	40	0.4	
	Mean	19.7		8.8	153	51	39		
12/1/06-12/8/06	3D	1.8	0.1	0.1	6	0	80	1	
c		00	80	8	80	8	∞	7	
	Min	16.9		8.5	140	51	30	<0.1	
5	Max	21.9	7.5	0.6	170	51	90	<0.1	

bage of

Dota Entry venticed against Laboratory bench shots
2-19-07
578

Aniline	Test 686-31	<u></u>					
mg/L	DAY	TEMP	pН	DO	COND	HARD	ALK
1,000	Ö	12.8	7.6	10.5	120	51	440
100	0	12.8	7.4	10.4			
10	0	12.9	7.4	10.4			÷
1	0	12.8	7.2	10.5			
0	. 0	12.8	7.2	10.4	110_	51	40
1,000	1	12.4	7.4	10.3			
100	1	12.4	7.4	10.2			
10	1	12.3	7.4	10.4			
1	1	12.4	7.3	10.3			
0	1	12.3	7.2	10.2			
1,000	2	12.6	7.5	10.1	125	51	460
100	2	12.5	7.4	10.6			
10	2	12.4	7.4	10.6			
1	2	12.5	7.3	10.6			
0	3	12.4	7.3	10.6	120	51	40
1,000		12.8	7.6	10.4			
100	3	12.8	7.5	10.2			
10	3	12.6	7.4	9.9			
1	3	12.8	7.5	10.1			
0	3	12.9	7.5	10.2			
1,000	4	12.5	7.5	10.2	125	51	440
100	4	12.6	7.3	10.1			
10	4	12.3	7.3	10.3			
1	4	12.5	7.2	10.2			
0	4	12.4	7.2	10.2	120	51	40
	Mean	12.6	7.4	10.3	·		
	SD	0.2	0.1	0.2			
	n	25	25	25	6	6	6
	Min	12.3	7.2	9.9	110	51	40
	Max	12.9	7.6	10.6	125	51	460

Mg/L	Copper	Test 686-32						
1.0	mg/L	DAY	TEMP	рН	DO -	COND	HARD	ALK
0.01 0 12.2 7.1 10.7 0.001 0 12.1 7.1 10.8 0 0 12.3 7.1 10.6 110 51 40 1 1 12.2 7.2 10.6 10.4 10.0 10.0 10.0 10.0 10.2 10.2 10.2 10.2 10.0 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.0 10.1 12.6 7.2 10.3 10.7 120 51 40 40 10.1 12.2 7.3 10.7 120 51 40 40 10.1 12.2 7.3 10.7 120 51 40 40 10.1 12.2 12.3 7.3 10.6 10.0	1.0	0	12.2	6.9	10.8	110	51	40
0.001 0 12.1 7.1 10.8 0 0 12.3 7.1 10.6 110 51 40 1 1 12.2 7.2 10.6 10.6 10.0 51 40 0.01 1 12.3 7.2 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.3 10.5 10.3 10.7 120 51 40 0.01 2 12.2 7.3 10.7 120 51 40 0.1 2 12.3 7.3 10.6 0 0 51 40 0.01 2 12.3 7.3 10.6 0 0 0 115 51 40 1.0 3 12.7 7.5 10.4 115 51 40 1.0 3 12.8 7.6 10.5 10.5 115 51 40 0.01 3 12.8 7.6	0.1	0	12.1	7.1	10.8	•		
0 0 12.3 7.1 10.6 110 51 40 1 1 12.2 7.2 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.4 10.4 10.4 10.4 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.3 10.5 10.5 10.3 10.5 10.3 10.7 120 51 40 10.0 10.1 10.2 12.3 7.3 10.6 10.6 10.0 10.1 10.6 10.6 10.6 10.6 10.6 10.0<	0.01	0	12.2	7.1	10.7			
1 1 12.2 7.2 10.6 0.1 1 12.3 7.2 10.4 0.001 1 12.3 7.2 10.2 0.001 1 12.4 7.2 10.5 0 1 12.6 7.2 10.3 1.0 2 12.2 7.3 10.7 120 51 40 0.1 2 12.3 7.3 10.6 0 0 2 12.3 7.3 10.6 0 0 0 0 10.6 0 0 0 0 0 0 0 10.6 0	0.001	0						
0.1 1 12.3 7.2 10.4 0.001 1 12.3 7.2 10.2 0.001 1 12.4 7.2 10.5 0 1 12.6 7.2 10.3 1.0 2 12.2 7.3 10.7 120 51 40 0.1 2 12.3 7.3 10.6 0 0 10.6 0 0 0 0 10.6 0 0 0 0 10.6 0 0 0 0 10.6 0 0 0 0 10.6 0 0 0 10.6 0 0 0 10.6 0 0 0 10.6 0 0 0 0 10.6 0 0 0 10.6 0 0 0 0 10.4 0 0 0 0 10.4 0 <td< td=""><td>0 .</td><td>0</td><td></td><td></td><td></td><td>110</td><td>51</td><td>40</td></td<>	0 .	0				110	51	40
0.01 1 12.3 7.2 10.2 0.001 1 12.4 7.2 10.5 0 1 12.6 7.2 10.3 1.0 2 12.2 7.3 10.7 120 51 40 0.1 2 12.3 7.3 10.6 0 0 2 12.3 7.3 10.6 0 0 0 2 12.3 7.3 10.6 0 0 0 2 12.3 7.3 10.6 0 0 0 2 12.6 7.3 10.4 11.5 51 40 1.0 3 12.7 7.5 10.4 10.3 10.3 10.4 10.5 10.3 10.4 10.5 10.5 10.4 <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	1						
0.001 1 12.4 7.2 10.5 0 1 12.6 7.2 10.3 1.0 2 12.2 7.3 10.7 120 51 40 0.1 2 12.3 7.3 10.6 0 0 2 12.3 7.3 10.6 0 0 0 2 12.3 7.3 10.6 0 0 0 2 12.8 7.3 10.6 0 0 0 10.5 0 0 0 10.4 0 0 0 10.4 0 0 0 10.4 0	0.1	1					•	
0 1 12.6 7.2 10.3 1.0 2 12.2 7.3 10.7 120 51 40 0.1 2 12.3 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.6 7.3 10.4 7.3 10.4 7.3 10.4 7.3 10.3 7.3 10.5 7.3 10.4 7.3 10.5 7.3 10.4 7.3 10.5 7.3 10.4 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.4 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.5 7.3 10.5 7.3 <th< td=""><td>0.01</td><td>1</td><td>12.3</td><td></td><td></td><td></td><td></td><td></td></th<>	0.01	1	12.3					
1.0 2 12.2 7.3 10.7 120 51 40 0.1 2 12.3 7.3 10.6 0 0 10.6 0 0 0 10.6 0 0 0 10.6 0 0 0 0 10.6 0 0 0 0 10.6 0 0 0 0 0 0 10.6 0 0 0 0 10.6 0 0 0 0 0 10.6 0 0 0 0 10.6 0	0.001	1	12.4		10.5			
0.1 2 12.3 7.3 10.6 0.01 2 12.3 7.3 10.6 0.001 2 12.3 7.3 10.6 0 2 12.6 7.3 10.4 115 51 40 1.0 3 12.7 7.5 10.4 0.1 3 12.8 7.6 10.5 0.001 3 12.8 7.6 10.4 0 3 12.8 7.6 10.4 0 1.0 4 12.1 7.3 10.5 115 51 40 1.0 4 12.1 7.3 10.3 0.01 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.5 0 4 12.1 7.2 10.5 0 4 12.1 7.2 10.5 0 4 12.1 7.2 10.5 0 7.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0		12.6					
0.01 2 12.3 7.3 10.6 0.001 2 12.3 7.3 10.6 0 2 12.6 7.3 10.4 115 51 40 1.0 3 12.7 7.5 10.4 10.3 10.3 10.3 10.5 10.5 10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 11.5 51 40 40 10.1 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.3 10.4 10.3 10.3 10.4 10.3 10.4 10.3 <td>1.0</td> <td></td> <td>12.2</td> <td></td> <td></td> <td>120</td> <td>51</td> <td>40</td>	1.0		12.2			120	51	40
0.001 2 12.3 7.3 10.6 0 2 12.6 7.3 10.4 115 51 40 1.0 3 12.7 7.5 10.4 10.3 10.3 10.3 10.3 10.5 10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 <	0.1	2	12.3					
0 2 12.6 7.3 10.4 115 51 40 1.0 3 12.7 7.5 10.4	0.01	2	12.3					
0.1 3 12.7 7.6 10.3 0.01 3 12.8 7.6 10.5 0.001 3 12.6 7.6 10.4 0 3 12.8 7.6 10.4 1.0 4 12.1 7.3 10.5 115 51 40 0.1 4 12.1 7.3 10.3 0.01 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.3 0 4 12.1 7.2 10.2 110 51 40 Mean 12.3 7.3 10.5 SD 0.2 0.2 0.2 SD 0.2 0.2 0.2 SD 0.2 0.2 0.2 110 51 40 Min 12.1 6.9 10.2 110 51 40	0.001	2	12.3	7.3	10.6			
0.1 3 12.7 7.6 10.3 0.01 3 12.8 7.6 10.5 0.001 3 12.6 7.6 10.4 0 3 12.8 7.6 10.4 1.0 4 12.1 7.3 10.5 115 51 40 0.1 4 12.1 7.3 10.3 0.01 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.3 0 4 12.1 7.2 10.2 110 51 40 Mean 12.3 7.3 10.5 SD 0.2 0.2 0.2 SD 0.2 0.2 0.2 SD 0.2 0.2 0.2 110 51 40 Min 12.1 6.9 10.2 110 51 40	0	2				115	51	40
0.001 3 12.6 7.6 10.4 0 3 12.8 7.6 10.4 1.0 4 12.1 7.3 10.5 115 51 40 0.1 4 12.1 7.3 10.3 10.3 10.4 10.3 10.4 10.2 11.0 51 40 40.4 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 <td< td=""><td>1.0</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1.0	3						
0.001 3 12.6 7.6 10.4 0 3 12.8 7.6 10.4 1.0 4 12.1 7.3 10.5 115 51 40 0.1 4 12.1 7.3 10.3 10.3 10.4 10.3 10.4 10.2 11.0 51 40 40.4 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 11.0 51 40 10.2 <td< td=""><td>0.1</td><td>3</td><td>12.7</td><td></td><td>10.3</td><td></td><td></td><td></td></td<>	0.1	3	12.7		10.3			
0 3 12.8 7.6 10.4 1.0 4 12.1 7.3 10.5 115 51 40 0.1 4 12.1 7.3 10.3 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.3 10.5 10.3 10.3 10.3 10.5 10.3 <td< td=""><td>0.01</td><td></td><td>12.8</td><td></td><td></td><td></td><td></td><td></td></td<>	0.01		12.8					
1.0	0.001		12.6					
0.1 4 12.1 7.3 10.3 0.01 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.3 0 4 12.1 7.2 10.2 110 51 40 Mean 12.3 7.3 10.5 <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0							
0.01 4 12.1 7.2 10.4 0.001 4 12.1 7.2 10.3 0 4 12.1 7.2 10.2 110 51 40 Mean 12.3 7.3 10.5 SD 0.2 0.2 0.2 n 25 25 25 6 6 6 Min 12.1 6.9 10.2 110 51 40	1.0					115	51	40
0.001 4 12.1 7.2 10.3 0 4 12.1 7.2 10.2 110 51 40 Mean 12.3 7.3 10.5		4						
Mean 12.3 7.3 10.5 SD 0.2 0.2 0.2 n 25 25 25 6 6 6 Min 12.1 6.9 10.2 110 51 40	0.01	4						
Mean 12.3 7.3 10.5 SD 0.2 0.2 0.2 n 25 25 25 6 6 6 Min 12.1 6.9 10.2 110 51 40								
SD 0.2 0.2 0.2 n 25 25 25 6 6 6 Min 12.1 6.9 10.2 110 51 40	0	4	12.1	7.2	10.2	110	51	40
n 25 25 25 6 6 6 Min 12.1 6.9 10.2 110 51 40								
Min 12.1 6.9 10.2 110 51 40		SD						
Max 12.8 7.6 10.8 120 51 40		Min						
		Мах	12.8	7.6	10.8	120	51	40

data entry verified against laboratory bench sheets 2-19-07

Pentachlo	rophenol	Test 686-33					
mg/L	DAY	TEMP	рН	DO:	COND	HARD	ALK
4.0	0	12.2	7.2	10.4	115	51	40
0.4	0	12.2	7.1	10.4			
0.004	0	12.2	7.1	10.2			
0.004	0	12.2	7.1	10.4			
0	0	12.3	7.1	10.4	110	51	40
4.0	1	12.2	7.4	10.2			
0.4	1	12.2	7.3	10.4			
0.004	1	12.2	7.3	10.4			
0.004	1	12.2	7.2	10.2			
0	1	12.2	7.2	10.3			
4.0	2	12.2	7.5	10.5	125	51	40
0.4	2	12.2	7.4	10.5			
0.004	2	12.2	7.3	10.4			
0.004	2	12.3	7.3	10.6			
0	2 3	12.3	7.3	10.5	120	51	40
4.0		12.7	7.6	10.3			•
0.4	. 3	. 12.7	7.6	10.4			
0.004	3	12.7	7.6	10.2			
0.004	3	12.8	7.6	10.3			
0	3	12.8	7.5	10.2			<u></u>
4.0	4	12.1	7.3	10.6	115	51	40
0.4	4	12.1	7.3	10.6			
0.004	4	12.1	7.3	10.5	٠		
0.004	4	12.1	7.2	10.4			
0	4	12.1	7.2	10.4	115	51	40
	Mean	12.3	7.3	10.4			
	SD	0.2	0.2	0.1			
	n	25	25	25	6	6	6
	Min	12.1	7.1	10.2	110	51	40
	Max	12.8	7.6	10.6	125	51	40

Data Entry Ventied against Laboratory bencht sheets 2-19-07 DUF

Lindane mg/L	Test 686-3 DAY	4 TEMP	рН	DO	COND	HARD	ALK
8.0	0	12.2	7.3	10.4	115	51	40
0.8	0	12.2	7.3	10.2			
0.08	0	12.3	7.2	10.2			
0.008	0	12.1	7.2	10.4			
0.00	0	12.2	7.2	10.2	115	51	40
8.0	1	12.1	7.5	10.1	·		
0.8	1	12.1	7.4	10.2		•	
0.08	1	12.2	7.3	10.5			
0.008	1	12.2	7.3	10.2			
0 .	1	12.1	7.3	10.4			
8.0	2	12.2	7.5	10.4	120	51	40
0.8	2	12.2	7.4	10.5			
0.08	2	12.2	7.4	10.4			•
0.008	2	12.1	7.4	10.8			
0.	2	12.2	7.3	10.6	120	51	40
8.0	3	12.7	7.6	10.4			
0.8	3	12.6	7.6	10.2			
0.08	3	12.8	7.6	10.3			
0.008	3	12.8	7.5	10.3			
0	3	12.6	7.5	10.4	<u>.</u>		
8.0	4	12.1	7.4	10.3	115	51	40
0.8	4	12.2	7.3	10.2			
0.08	4	12.2	7.3	10.4			
0.008	4	12.3	7.3	10.3			
0	4	12.1	7.2	10.2	115	51	40
	Mean	12.3	7.4	10.3			
	SD	0.2	0.1	0.2	 		
	n	25	25	25	6	6	6
	Min	12.1	7.2	10.1	115	51	40
	Max	12.8	7.6	10.8	120	51	40

Data Entry Venified against Laboratory bench shects 2-19-07 JRF

Diazinon	Test 686-3	5					
mg/L	DAY	TEMP	pН	DO	COND	HARD	ALK
40	0	12.2	7.3	10.6	115	51	30
4.0	0	12.1	7.3	10.6			
0.4	0	12.2	7.3	10.5			
0.04	0	12.1	7.3	10.7		**	
0	0 ,	12.1	7.3	10.6	115	51	30
40	1	11.8	7.1	10.6			
4.0	1	11.8	7.1	10.5			
0.4	1	11.7	7.1	10.5			
0.04	· 1	11.8	7.1	10.4		•	
0	1	11.8	7.1	10.5			
40	2	11.9	7.3	10.4	120	51	30
4.0	2 2	12.0	7.3	10.3			
0.4	2	11.9	7.2	10.5			
0.04	2	11.7	7.2	10.6			
0	2	11.8	7.2	10.6	125	51	30
40	3	11.8	7.3	10.6			
4.0	3 3	11.7	7.3	10.4			
0.4	3	11.8	7.3	10.3			
0.04	3	11.8	7.3	10.3			
0	3	11.9	7.3	10.2			
40	4	11.9	7.3	10.5	120	51	30
4.0	4	11.8	7.3	10.6			
0.4	4	11.8	7.3	10.5			
0.04	. 4	11.9	7.3	10.3			
0	4	12	7.3	10.4	120	51	40
	Mean	11.9	7.2	10.5			
	SD	0.1	0.1	0.1			
	n	25	25	25.	. 6	6	6
	Min	11.7	7.1	10.2	115	51	30
	Max	12.2	7.3	10.7	125	51	40
•							

Data Entry Ventied against Laboratory Bench sheets 2-19-01 JOSF

ture Experi	ment #1		Test 686-36	}		
DAY	TEMP	pН	DO	COND	HARD	ALK
C	12.6	7.3	11	120	51	30
1	12.2	7.4	11.2	120	•	
2	2 12.1	6.9	10.2	125	51	30
3	3 12.2	7.4	10.4	120	-	
. 4	12.5	6.9	10.6	130	51	30
Mean	12.3	7.2	10.7	123	51	30
	0.2	0.3	0.4	4	0	0
	5	5	. 5	5	3	. 3
i a a	12.1	6.9	10.2	120	51	30
1	12.6	7.4	11.2	130	51	30
DAY	TEMP	рН	DO	COND	HARD	ALK
() 16.5	7.3	9.7	125	51	30
	1 17.0	7.2	9	135		
2	2 16.5	6.8	9.1	140	51	30
		7.4	8.8	130		
		7.0	9.0	140	51	30
Mean	16.9	7.1	9.1	134	51	30
	0.4	0.2	0.3	. 7	0	0
1	5	5	5	5	3	3
	16.5	6.8	8.8	125	51	30
Max	17.3	7.4	9.7	140	51	30
	Mean SD n Min Max DAY Mean SD n Min Max DAY	0 12.6 1 12.2 2 12.1 3 12.2 4 12.5 Mean 12.3 SD 0.2 n 5 Min 12.1 Max 12.6 DAY TEMP 0 16.5 1 17.0 2 16.5 3 17.3 4 17.0 Mean 16.9 SD 0.4 n 5 Min 16.5	DAY TEMP pH 0 12.6 7.3 1 12.2 7.4 2 12.1 6.9 3 12.2 7.4 4 12.5 6.9 Mean 12.3 7.2 SD 0.2 0.3 1 12.1 6.9 Max 12.6 7.4 DAY TEMP pH 0 16.5 7.3 1 17.0 7.2 2 16.5 6.8 3 17.3 7.4 4 17.0 7.0 Mean 16.9 7.1 SD 0.4 0.2 n 5 5 Min 16.5 6.8	DAY TEMP pH DO 0 12.6 7.3 11 1 12.2 7.4 11.2 2 12.1 6.9 10.2 3 12.2 7.4 10.4 4 12.5 6.9 10.6 Mean 12.3 7.2 10.7 SD 0.2 0.3 0.4 n 5 5 5 Min 12.1 6.9 10.2 Max 12.6 7.4 11.2 DAY TEMP pH DO 0 16.5 7.3 9.7 1 17.0 7.2 9 2 16.5 6.8 9.1 3 17.3 7.4 8.8 4 17.0 7.0 9.0 Mean 16.9 7.1 9.1 SD 0.4 0.2 0.3 n 5 5 5	DAY TEMP pH DO COND 0 12.6 7.3 11 120 1 12.2 7.4 11.2 120 2 12.1 6.9 10.2 125 3 12.2 7.4 10.4 120 4 12.5 6.9 10.6 130 Mean 12.3 7.2 10.7 123 SD 0.2 0.3 0.4 4 n 5 5 5 5 Min 12.1 6.9 10.2 120 Max 12.6 7.4 11.2 130 DAY TEMP pH DO COND 0 16.5 7.3 9.7 125 1 17.0 7.2 9 135 2 16.5 6.8 9.1 140 3 17.3 7.4 8.8 130 4 17.0 7.0	DAY TEMP pH DO COND HARD 0 12.6 7.3 11 120 51 1 12.2 7.4 11.2 120 2 2 12.1 6.9 10.2 125 51 3 12.2 7.4 10.4 120 51 4 12.5 6.9 10.6 130 51 Mean 12.3 7.2 10.7 123 51 SD 0.2 0.3 0.4 4 0 n 5 5 5 5 3 Min 12.1 6.9 10.2 120 51 Max 12.6 7.4 11.2 130 51 DAY TEMP pH DO COND HARD 1 17.0 7.2 9 135 1 2 16.5 6.8 9.1 140 51 3

Data Entry Ventied against Laboratory Bench sheets 219-07 JRF

ure Experime	ent #2	T	est 686-37			
DÂY	TEMP	pH _	DO _	COND		ALK
. 0	11.9	7.4	10.6	115	51	30
1	12.3	7.0	10.1	120		•
2	12.6	7.1	10.2	110	51	30
3	12.1	7.0	10.9	130		
4	12.2	7.0	10.8	125	51	40
Mean	12.2	7.1	10.5	120	51	33
	0.3	0.2	0.4	8		6
i	5	5	5	5	3	3
	11.9	7.0	10.1	110°	51	- 30
	12.6	7.4	10.9	130	51	40
DAY	TEMP	pН	DO	COND	HARD	ALK
0	21.8	7.3	8.8	140	51	30
1	23.0	6.9	8.2	140		
• 2	22.6	7.3	. 8	140	51	40
	21.8	7.2	8.2	160		
4	22.2	7.2	8.3	150		40
Mean	22.3	7.2	8.3	146	51	37
		0.2	0.3	9		6
i i	5	5	5	5		3
1	21.8	6.9	8.0	140	51	30
Max	23.0	7.3	8.8	160	51	40
	DAY 0 1 2 3 4 Mean SD n Min Max DAY 0 1 2 3 4 Mean SD n Min Max	0 11.9 1 12.3 2 12.6 3 12.1 4 12.2 Mean 12.2 SD 0.3 n 5 Min 11.9 Max 12.6 DAY TEMP 0 21.8 1 23.0 2 22.6 3 21.8 4 22.2 Mean 22.3 SD 0.5 n 5 Min 21.8	DAY TEMP pH 0 11.9 7.4 1 12.3 7.0 2 12.6 7.1 3 12.1 7.0 4 12.2 7.0 Mean 12.2 7.1 SD 0.3 0.2 n 5 5 Min 11.9 7.0 Max 12.6 7.4 DAY TEMP pH 0 21.8 7.3 1 23.0 6.9 2 22.6 7.3 3 21.8 7.2 4 22.2 7.2 Mean 22.3 7.2 SD 0.5 0.2 n 5 5 Min 21.8 6.9	DAY TEMP pH DO 0 11.9 7.4 10.6 1 12.3 7.0 10.1 2 12.6 7.1 10.2 3 12.1 7.0 10.9 4 12.2 7.1 10.5 SD 0.3 0.2 0.4 n 5 5 5 Min 11.9 7.0 10.1 Max 12.6 7.4 10.9 DAY TEMP pH DO 0 21.8 7.3 8.8 1 23.0 6.9 8.2 2 22.6 7.3 8 3 21.8 7.2 8.2 4 22.2 7.2 8.3 SD 0.5 0.2 0.3 n 5 5 5 Min 21.8 6.9 8.0	DAY TEMP pH DO COND 0 11.9 7.4 10.6 115 1 12.3 7.0 10.1 120 2 12.6 7.1 10.2 110 3 12.1 7.0 10.9 130 4 12.2 7.0 10.8 125 Mean 12.2 7.1 10.5 120 SD 0.3 0.2 0.4 8 n 5 5 5 5 Min 11.9 7.0 10.1 110° Max 12.6 7.4 10.9 130 DAY TEMP pH DO COND 0 21.8 7.3 8.8 140 1 23.0 6.9 8.2 140 2 22.6 7.3 8 140 3 21.8 7.2 8.2 160 4 22.2 7.2	DAY TEMP pH DO COND HARD 0 11.9 7.4 10.6 115 51 1 12.3 7.0 10.1 120 51 2 12.6 7.1 10.2 110 51 3 12.1 7.0 10.9 130 51 4 12.2 7.0 10.8 125 51 Mean 12.2 7.1 10.5 120 51 SD 0.3 0.2 0.4 8 0 n 5 5 5 5 3 Min 11.9 7.0 10.1 110° 51 Max 12.6 7.4 10.9 130 51 DAY TEMP PH DO COND HARD 1 23.0 6.9 8.2 140 51 2 22.6 7.3 8 140 51 3

	4	Nom. Conc.	Number	Number	
Test ID	Test No.	mg/L	Exposed	Suviving	% Surv.
Aniline	686-31	1,000	5	. 0	0
		100	5	5	100
		10	5	5	100
		1 ,	5	5	100
		0	5	5	100
Copper	686-32	1	5	0	0
		0.1	5	2	40
		0.01	5	5	100
•		0.001	5	5	100
		0	5	- 5	100
Penta	686-33	4	5	0	0
		0.4	5	0	0.
		0.04	5	5	100
		0.004	5	5	100
		0	5	5	100
Lindane	686-34	8	5	0	0
		0.8	5	5	100
		0.08	5	5	100
		0.008	5	5	100
	****	0	5	5	100
Diazinon	686-35	40	5	0	0
		4	5	5	100
		0.4	5	5	100
		0.04	5	5	100
g		0	5	5	100
17C	686-36	17C	5	5	100
		17C	5	5	100
		17C	5	5	100
		17C	5	5	100
12C	686-36	12C	5	5	100
		12C	5	5	100
		12C	5	5	100
		12C	5	5	100
22C	686-37	22C	5	5	100
	4	22C	. 5	4	80
		22C	5	5	100
-100	000.07	22C	5	5	100
12C	686-37	12C	5	5	100
		12C	5	5	100
		12C	5	5	100
		12C	5	5	100

Test ID	Test No.	Length (mm)	Weight (g)		Length (mm)	Weight (g)
Aniline	686-31	72	0.49	Mean	74	0.54
		67	0.38	SD	6	0.15
		71	0.47	n"	5	5
		79	0.63	Min	67	0.38
		83	0.75	Max	. 83	
Copper	686-32	55	0.25	Mean	54	0.26
		51	0.19	SD	3	0.09
		50	0.19	n	5	-5
		56	0.24	Min	50	0.19
		58	0.42	Max	58	0.42
Penta	686-33	55	0.25	Mean	57	0.28
		51	0.18	SD	14	0.21
		50	0.15	n	5	5
		49			49	
		82		Max	82	
Lindane	686-34	59			69	
		58			12	
		68			5	
		70			- 58	
		88			88	
Diazinon	686-35	70		Mean	74	
		90			9	
		70			5	
		74			68	
		68			90	
17C	686-36	80			74	
17C		71			7	
		65			5	
		. 72			65	
		82			82	
12C	686-36	88		- 11 -	66	
		72			15	
	•	60			5	
		64			46	
		46			88	
22C	686-37	70			64	
	000 01	58			7	
		55		n	5	
		68			55	
		70		Max	70	
12C	686-37	65		Mean	70	
120	000-01	62			. 7	
		80			5	
		70			62	
		71			80	
	Mean	67				0.00
	SD	11				
		45				_
	n Min	45 46		· · · · · · · · · · · · · · · · · · ·		-
	Min	90				
	Max	90	1.00		<u> </u>	

el ata Entry Ventre against Laboratory bench Sneets 2-19-07 JMF

CHAIN-OF-CUSTODY RECORDS

CHAIN-OF-CUSTODY/TEST REQUEST FORM

ō

2409

ž

water tempo 12 9PC in sight Comments / Instructions (Jar tag number(s)) Shipping Date: 15.17.06 Turnaround requested: Airbill Number: 2) Rec'd by: Test(s) Requested (check test(s) required) Gran Buhrer Ship to: 0.9.5. Purchase Order / Statement of Work # SSTUPPINA Form filled out by: × Shipper: 2) Released by: 724 ammocolis Matrix vater Volume of Sample / # of Containers Cular Cempliane Project/Client Name: UND LA LAW PTU AUMIND COCK $\frac{7}{20}$ sietz R. Cedur Cr.) Total Number of Containers Rec'd by: Sample Identification Andersen を含えて Sitte P 2 10-17-06 1655 10.17.01 West Contact Name: Sampled By: Project Number: Sample Collection Date 1) Released by Page 59 of

Distribution: White copies accompany shipment; yellow retained by consignor.

Date/Fine: 10 1706/1695

SUNDANTA

Company

Print narige.

WINGWard

200 West Mercer Street Suite 401 Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343

To be completed by Laboratory upon sample receipt:

Condition upon receipt:

Cooler temperature:

Received by:

Date/Time:

Date/Time:

Date/Time: 17.06/1655

Company:

Print name:

Signature: Company:

Сомрапу:

	3	_		
	į		•	_
	i	4	4	_
		ı	٠	j
		Ŀ	-	
		,	•	٠,
	ŧ	ι		
		ď	•	
	ŧ	L	4	
		L		
		ſ	_	_
		TICK FOR	ı	7
	ì	1	,	ר ר
	ŧ	•	۰	-
	į	-	_	٦
	i	-	-	
		- (-	ζ
		l		J
			٠	
	ì		ł	4
		,		j
	ì,	L	1	Ĺ
	1			
	i	Г		_
	-	L	ı	ገ
	: 1	7	ï	7
	şl	۰	٠	4
	1	Ļ,	_	
	Ų	Ĺ		_
	,		`	-
	1	è	>	×
		è	=	
	i	Ĺ		1
	1	_		こうこう
	1	7		٦
	-1	١,		,
	1	L		_
	•	ľ		_
	1	L	ſ	١.
		Ξ	٠.	:
				3
	1	,	-	ì
	1)
	1	٩	-	•
			ŧ	
	ì		Ĺ	
•	: 4	d		Ĺ
	ı)
	•	۰	۲	7
			Į	
	4 4	٠,	Ì	•
	4	Ź	_	
	1			
			ŕ	•
	1	•	1	
		٠	•	•
			L	

of

	Shipping Date: 10.18.06	Airbill Number:	Turnaround requested:	ed)			Comments / Instructions [far tag number(s)]	6 Maline 2740 2000									,			2) Rec'd bv:		Company:		Date/Time:
Ship to: 7.4 V		Shipper: hand del'd	Form filled out by:	Test(s) Requested (check test(s) required)		Κ,	Q/_	D											Purchase Order / Statement of Work #		Print name:	Signature:	Company:	Date/Time:
pro ammicela (toxicily)						Volume of	Sar	Cleda Par & Budganmareta	Cott) NED summer										がある。	1) Rec'd by:	(my Bukh	Company: 1 A	()	Date/Time: 10.18.06/15710
riojecucinent vame: LALO FRA - IAMPRO ANNWICOLL (POLICIA)	Project Number:	Contact Name: Helle Anderson	Sampled By: TDv, M LUXBY		·	Sample	(m/d/y) Time Sample Identification	10.18.06 15:00 W Sietz R.											Total Number of Containers	1) Released by: 74th B	c: 71 A ST	j.	Company WINDWARD ON UC	Date/fime: 10 18.00/15: 16
				 						P	as	ĉ٤	60	3 6	o F	7.	3			 -	<u>-i.</u>		1	

• Distribution: White copies accompany shipment; yellow retained by consignor.

200 West Mer
Suite 401
Seattle, WA 9:
Tel: (206) 378

200 West Mercer Street Suite 401 Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343

Date of receipt:

Condition upon receipt:

Cooler temperature:

To be completed by Laboratory upon sample receipt:

Caboratory W.O. #.

Time of receipt:

Received by:

CHAIN-OF-CUSTODY/TEST REQUEST FORM

°!

Turnaround requested: Airbill Number: Shipping Date: Ship to: N. A.S. Form filled out by: Shipper: Project/Client Name: LANG ELPA- AMARKY ANAMORKY (FOXICILY) 5 Buenim Andersen Project Number: 06 18 0445 Sampled By: TDD Contact Name: Helle

							Test(s) R	equested (Test(s) Requested (check test(s) required)	required)			
				-				-			_		
						45							
Cample				Volume of		ᅪ	•		_	···		•	
Collection Date (m/d/y)	Time	Sample Identification		Sample / # of Containers	Matríx	.xot						Comments / Instructions [Jar tag number(s)]]
10.23.06	1300	LW3-Sileta Piles	2 RIVER	4 coolers	ammorphy	7						in situ tunp 12.1°C	
				~200 d.									-
					\						_		
								-					
									,				
		Total Number of Containers	15,750		Purchase Order / Statement of Work #	/ Stateme	nt of Wor	#			-		
1) Released by: 7441	1441 VO		1) Rec'd by:	1 1	2	2) Released by:	ж:			2) (2) Rec'd by:		
Print name: +1+4	1441 PD		Carl	xhh		Print name:	;;						
Signature:		,	Company:			Signature:					Company:		•
	2 WYDWA	LOWDWARD CHU	ک. ۵. ک	1.5		Company:					-		
Date/Time: 10	33.06	Date/Time: 10.23.06 / 1710	Date/Time:	٨.	0141/	Date/Time:	ž:				Date/Time:		··
			2	1									1

* Distribution: White copies accompany shipment; yellow retained by consignor.

WINDWard

200 West Mercer Street Suite 401 Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343

Date of receipt:

Condition upon receipt:

Cooler temperature:

To be completed by Laboratory upon sample receipt:

Laboratory W.O. #.

Time of receipt:

Received by:

_	
₹	
o	

CHAIN-OF-CUSTODY/TEST REQUEST FORM

一大なが大	1 × × ×
ammorade	
Jampau	ر ا
Co Clet	1.74 AA
Client Name: [][t Number: D
Project/C	Projec

Helle Anderson Contact Name:

Sampled By: TDo JBulling

Ship to: NAS

Attn: Gran Bulyer Hipper: hand de 1 d Shipper:

Airbill Number: Shipping Date:

Turnaround requested:

Form filled out by: T.B.

in statemp. 11.8°C Comments / Instructions (Jar tag number(s) 2). Rec'd by: Test(s) Requested (check test(s) required) Purchase Order / Statement of Work # 2) Released by: 492 704 annocetes Matrix Sample / # of b course Volume of 1300 C. Containers Ludy Sileta River 1) Rec'd by: (Lidar Creek week) Total Number of Containers Sample Identification Signature: THAM TO Signature: 1) Released by: THAN 'ES 10.74.06 1350 Time Collection Date Sample (m/d/y)

Page 62 of 73

Date/Time: 10-14-06/ [750 Distribution: White copies accompany shipment; yellow retained by consignor.

WIN Ward

200 West Mercer Street Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343 Suite 401

To be completed by Laboratory upon sample receipt: Laboratory W.O. #: Time of receipt; Received by: Condition upon receipt: Date of receipt: Cooler temperature:

Company:

Date/Time:

Date/Time:

Company: Signature:

Company:

Company: Law Durnes and uc

Signature:

Date/Time: 10,24.06/1750

Print name:

1**NOTLII WESTETTI Aquatic ociences**3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

Client Name	Project No.	Shipping Information	Shipping Information		Testing Required	Testing Required			
_	06-28-04-45	Carrier: UPS	PS		lo	:			
Address 200 West Mercer St., Suite 401	Phone No. 206-577-1287								•
	Report Attention Helle Anderson	Airbill No. 12.849 16	Airbill No. 10033043	obbe-	nebni 	nilin			
Time Sampled	Sampled by G.A. Buhler		Number of Containers		L entac	√			
	Sample Description	iption			d			Comments	
1400	NAS# 0775G Day 0 - 1.0	.0 mg/L Cu	-	×					
1400	NAS# 0776G Day 0 - 0.1	.1 mg/L Cu		×					
1400	NAS# 0777G Day 0-0	Day 0 0.01 mg/L Cu	-	×					
1400	NAS# 0778G Day 0 0	Day 0 0.001 mg/L Cu		×					
1400	NAS# 0779G Day 0 0	Day 0 - 0 mg/L Cu		×					
1545	NAS# 0790G Day 0-1	Day 0 - 1000 mg/L Aniline				×			
1545	NAS# 0791G Day 0-1	Day 0 - 100 mg/L Aniline				×			
1545	NAS# 0792G Day 0 - 10	10 mg/L Aniline				x	1		
1545	NAS# 0793G Day 0 - 1.0	1.0 mg/L Aniline	1			×			
1545	NAS# 0794G Day 0 – 0	Day 0 – 0 mg/L Aniline	1			×			
	Print Name		Company			Date	Time	Coaler Custody Seal	
n L	GARY A BUNIEV		550			90 ल/॥	1320	Present/Not Presen	Present
						·		Internal Cooler/Temperature Upon Lab Recept (CC)	rature Upon Lab

Page 63 of 73

Received by laboratory

Relinquished by

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

Client Name		Tel: 541-26	5-7225, Fax: 541-2 Shipping Information	65-2799, www	nwaquati	.com	
Windward Environmental		-45	me manuation	1 estin	resting Kequired		
Address 200 West Mercer St. Suite 401		Phone No.	UPS		lon		
City, State, Zip code Seattle, WA 98119		Report Attention Airbill N	Airbill No. 12 849 169	ısne			
Lab Sample Date Time		Buhler	Number of Containers	oùJ	oldosti ———inA		
		Sample Description					
11.9-06 1415	 	NAS# 0780G Day 0-4.0 mg/L Penta			 ×	1	Comments
11-9-06 1415		NAS# 0781G Day 0 - 0.4 mg/L Penta			 		
11-9-06 1415		NAS# 0782G Day 0 - 0.04 mg/L Penta			×		
11-9-06 1415	-	NAS# 0783G Day 0 - 0.004 mg/L Penta			 		
11-9-06 1415		NAS# 0784G Day 0 - 0 mg/L Penta			: ×	-	
11-9-06 1440	ļ 	NAS# 0785G Day 0-8.0 mg/L Lindane		×			
11-9-06 1440		NAS# 0786G Day 0 - 0.8 mg/L Lindane		×			
11-9-06 1440		NAS# 0787G Day 0 - 0.08 mg/L Lindane		×	_		
11-9-06 1440		NAS# 0788G Day 0 - 0.008 mg/L Lindane		×	-		
11-9-06 1440		NAS# 0789G Day 0 - 0 mg/L Lindane		×	_		
					-		
Signature	P	Print Name	Company		_	_	
Kelingyished by Buyll Buyll	(Jave	Tava A R. Wasa	A V		Date		Cooler G
Received by)		99011	55	
Relinguished by					·,	·	And Andrews (Not Inter-
, 100 miles						-	を できたが、 できた。 できたい できたい できたい できたい できたい できたい できたい できたい

Page 64 of 73

Received by laboratory

Relinquished by

Received by

CLLLIN C. CULL JD. LECLLD

3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

Client Name			Project No.	Shipping	Shipping Information	L	Testing Required	red			
Windward Environmental	vironmenta	<u>a</u> .	06-28-04-45	Carrier: UPS	IPS		[1		r-		
Address 200 West Mer	cer St., Su	ite 401	Phone No. 206-577-1287								
City, State, Zip or Seattle, WA 9	ode 8119		Report Attention Helle Anderson		Airbill No.12 849 الح	obbei		ailia 			
Lab Sample Date Time No. Sampled	ate ampled	Time Sampled	Sampled by G.A. Buhler	٠	Number of Containers		htach	Α			***
e monda			Sample Description	iption			Pd			Comments	
	11-11-06	1620	NAS# 0795G 48-hr - 1.0 mg/L Cu	ng/L Cu OLD		×			_		
	90-11-11	1620	NAS# 0796G 48-hr - 0.11	48-hr - 0.1 mg/L Cu OLD	-	×					T
-	11-11-06	1620	NAS# 0797G 48-hr - 0.01	48-hr - 0.01 mg/L Cu OLD	1	×					Τ
+	11-11-06	1620	NAS# 0798G 48-hr 0.00	48-hr - 0.001 mg/L Cu OLD		×					Τ
	11-11-06	1620	NAS# 0799G 48-hr - 0 mg	48-hr - 0 mg/L Cu OLD		×					
-	11-11-06	1545	NAS# 0800G 48-hr - 1.0 r	48-hr - 1.0 mg/L Cu NEW		×					
	11-11-06	1545	NAS# 0801G 48-hr - 0.1	48-hr - 0.1 mg/L Cu NEW		×					
	11-11-06	1545	NAS# 0802G 48-hr - 0.01	48-hr - 0.01 mg/L Cu NEW	-	×		-			
	11-11-06	1545	NAS# 0803G 48-hr - 0.00	48-hr - 0.001 mg/L Cu NEW	_	×					
	11-11-06	1545	NAS# 0804G 48-hr - 0	mg/L Cu NEW	,	×					
Sig	Signature		Print Name		Company			Date	Time	Cooler Custody Seal	
Relinquished by	Trans	<i>ر</i> د 	Juine Fine	V42	S			11-13-CE	30	Present / Not Present	
Received by										Intact/Not Intact	
Relinquished by			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			**************************************				Internal Cooler Temperature Upon Lab Receipt (C)	ąg.
Received by									·		
Relinquished by											1.7
Received by laboratory	ratory										
]

Page 65 of 73

C...IN __ CL__OD__TEC__D

3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365
Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com
Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

Hant Name			Project No.	Shipping Information	nation	lestii	Testing Required	2			
Windward E	Windward Environmental	-	06-28-04-45	Carrier: UPS			lo				
Address 200 West M	Address 200 West Mercer St., Suite 401	te 401	Phone No. 206-577-1287				obyeu	əu	•		
City, State, Zip code	ocde 98119		Report Attention Helle Anderson	Airbill No. 1 4 947 149	ddo	ebni.		ilinA			
Lab Sample Date	Date	Time	Sampled by G.A. Buhler	Nun	Number of Containers	 -	·				
9			Sample Description	uc		-	d			Comments	
	11-11-06	1625	NAS# 0805G 48-hr - 4.0 mg/L Penta OLD	Penta OLD	1		×				
	11-11-06	1625	NAS# 0806G 48-hr - 0.4 mg/L Penta OLD	Penta OLD	1		×				丁
	90-11-11	1625	NAS# 0807G 48-hr - 0.04 mg/	04 mg/L Penta OLD	1		×				-T
	90-11-11	1625	NAS# 0808G 48-hr - 0.004 mg/L Penta OLD	g/L Penta OLD	-		×				
	11-11-06	1625	NAS# 0809G 48-hr - 0 mg/L F	mg/L Penta OLD	-		×		-		_
	11-11-06	1555	NAS# 0810G 48-hr - 4.0 mg/L Penta NEW	Penta NEW	1		×				_ [
	11-11-06	1555	NAS# 0811G 48-hr - 0.4 mg/L Penta NEW	Penta NEW			×				- 1
	11-11-06	1555	NAS# 0812G 48-hr - 0.04 mg/L Penta NEW	/L Penta NEW	1		×				- 1
	11-11-06	1555	NAS# 0813G 48-hr - 0.004 m	004 mg/L Penta NEW	1		×				- 1
	11-11-06	1555	NAS# 0814G 48-hr - 0 mg/L	mg/L Penta NEW			×				- 1
											- 1
7											
			Print Name	Cor	Company			Date	Time	Cooler Custody, Seal	
	Signature									Decree A	
Refinguished by	of the same	7	Julie Fint	St Z		1		11-13 ce	4000	Intact / Not Intact	
Received by		<u> </u>				-					1
Relinquished by	i by									Internal Cooler Temperature Upon Lab	F. T.
Received by						. '					
Relinquished by	d by										
Received by laboratory	/ laboratory										
							-				

Page 66 of 73

Northwestern Aquatic Sciences
3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365
Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

Client Name		Project No.	Shipping	Shipping Information	Tes	Testing Required			
Windward Environmental	3]	06-28-04-45	Sd11airrae		-				
Address 200 West Mercer St., Suite 401	ite 401	Phone No. 206-577-1287)					
City, State, Zip code Seattle, WA 98119		Report Attention Helle Anderson	Airbill No.	Airbill No. 12 849 169 61 1003 259 9	uqsue obber	dorol ———			
Lab Sample Date No. Sampled	Time Sampled	Sampled by G.A. Buhler		Number of Containers		ntach 			
		Sample Description				əd	· · · · · · · · · · · · · · · · · · ·		
11-11-06	1635	NAS# 0815G 48hr - 8.0 mg/L Lindane OLD	dane OLD	-	×			Commens	7
11-11-06	1635	NAS# 0816G 48hr - 0.8 mg/L Lindane OLD	dane OLD		×				
11-11-06	1635	NAS# 0817G 48hr - 0.08 mg/L Li	mg/L Lindane OLD	-	×				
11-11-06	1635	NAS# 0818G 48hr - 0.008 mg/L Lindane OLD	Lindane OLD		×				\top
11-11-06	1635	NAS# 0819G 48hr - 0 mg/L Lindane OLD	ane OLD	1	×				\top
0.0000000000000000000000000000000000000	1600	NAS# 0820G 48hr - 8.0 mg/L Lindane NEW	dane NEW	1	×		-	· · · · · · · · · · · · · · · · · · ·	T
11-11-06	1600	NAS# 0821G 48hr - 0.8 mg/L Lindane NEW	dane NEW	-	×	.:			T
11-11-06	1600	NAS# 0822G 48hr - 0.08 mg/L L	mg/L Lindane NEW		×				7
11-11-06	1600	NAS# 0823G 48hr - 0.008 mg/L Lindane NEW	Lindane NEW	-	×				1
11-11-06	1600	NAS# 0824G 48hr - 0 mg/L Lindane NEW	ine NEW		×				T
									1
									T
Signature		Print Name		Company		Date	Time	Cooler Custody Seal	-
Retinguished by	'Y	While Frank	V42	V		7.7.1	-	Present / Not Present	••
Received by])		2		Intact / Not Intact	
2								The second secon	
venuquistica by						-		Internal Cooler Temperature Upon Lab	
Received by								(2) (3)	
Relinquished by									
Received by laboratory			'						
									— <u>—</u>

Page 67 of 73

Nor mwester'n Axquatic Sciences
3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365
Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

	_	_	r
	A	r	Ļ
		Γ	
		Ò	
.	Q.	III	l
	E	Ü	•
	_		

								ŀ			Γ
Client Name Windward Environmental	ıental		Project No. 06-28-04-45	Shipping	Shipping Information		resting Keduired	nued			
Address 200 West Mercer St.	Suite 401		Phone No. 206-577-1287	Carrier or 3	ŗ.		ouəqo				
City, State, Zip code Seattle, WA 98119		Report Attention Helle Anderson	tion erson	Airbill No.	Airbill No. 12 849 169 01 1003 256. U	obben		nilia			
Lab Sample Date No. Sampled	Time Sampled	Sampled by	Sampled by G.A. Buhler		Number of Containers			٧	. .		
			Sample Description	ion			d			Comments	
11-11-06	1645	NAS# 0825G	i	48-hr - 1000 mg/L Aniline OLD	_			×			
11-11-06	1645	NAS# 0826G		48-hr – 100 mg/L Aniline OLD	-			×			Π
11-11-06	1645	NAS# 0827	NAS# 0827G 48-hr - 10 mg/	mg/L Aniline OLD				×			Γ
90-11-11	1645	NAS# 0828G	48-hr - 1.0	mg/L Aniline OLD	1			×			
11-11-09	1645	NAS# 0829G	48-hr 0 rr	ng/L Aniline OLD				×	-		[
11-11-06	0191 90	NAS# 0830G	3G 48-hr - 1000 n	48-hr - 1000 mg/L Aniline NEW	1			×			Γ
11-11-06	0191 90	NAS# 0831G		48-hr - 100 mg/L Aniline NEW	1			×			
11-11-06	0191 90	NAS# 0832G	48-hr - 10	mg/L Aniline NEW	-		 	×			
11-11-06	0191 90	NAS# 0833G	48-hr - 1.0	mg/L Aniline NEW	1			×			
11-11-06	0191 90	NAS# 0834G	48-hr 0 n	ng/L Aniline NEW				×			\prod
Signature		Print Name	ame		Company			Date	Time	Cooler Custody, Seal	
Relinguished by	three	-Juni-	ucie Fraz	SAS	S			10.E1-11	_ට ුට	Present / Not Present	
Received by										Intact / Not Intact	F - 1. (2)
Relinquished by										Internal Cooler Temperature Upon Lab Receipt (°C);	م ا
Received by											A state
Relinquished by											
Received by laboratory											

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax 541-265-2799, www.nwaquatic.com

Clent Name		Project No	Shinoin	Shinning Information	,	Testing Required	esting Required		
Windward Environmental		06-28-04-45	Carrier: UPS	Sdf		I			
Address 200 West Mercer St., Suite 401		Phone No. 206-577-1287							
6	Report Attention Helle Anderson	ntion Jerson	Airbill No	Airbill No. 12841/69	obbeı	ndane Horop	ənilin		
Lab Sample Date Time No Sampled Sampled		Sampled by G.A. Buhler		Number of Containers	ာ	Li entach		,	
		Sample Description	ıtion	·					Comments
11-13-06 1620	NAS# 0835G	5G 96hr - 1.0 mg/L Cu	/L Cu		×				
11-13-06 1620	NAS# 0836G	6G 96hr - 0.1 mg/L Cu	/L Cu	_	×				
11-13-06 1620	NAS# 0837G	96hr - 0.01	mg/L Cu		×				
11-13-06 1620	NAS# 0838G	8G 96hr - 0.001 mg/L Cu	ng/L Cu		×				
11-13-06 1620	NAS# 0839G	9G 96hr - 0 mg/L Cu	Cu	-	×				
11-13-06 1720	NAS# 0850G	0G 96hr - 1000 mg/L Aniline	1g/L Aniline				×		
11-13-06 1720	NAS# 0851G	96hr - 100	mg/L Aniline				×		
11-13-06 1720	NAS# 0852G	96hr – 10 n	ig/L Aniline				×		
11-13-06 1720	NAS# 0853G	3G 96hr - 1.0 mg/L Aniline	A. Aniline	-			×		
11-13-06 1720	NAS# 0854G	4G 96hr - 0 mg/L Aniline	. Aniline	1			×		
Signature	Print Name	lame.		Сотралу			Date	Time	Cooler Custody Seal
J. S.	Julie	F. 08.16	NAS	∽	•		D.H.11	0601	Present / Not Present
									Intact / Not Intact
									Internal Cooler Temperature Upon Lab Receipt (°C)
·									. 4,2
Received by laboratory									

CL_IN (_ CU_)D___EC_D

Client Name

Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com ənilinA Testing Required ×. × × × × Pentachlorophenol × × × × × Lindane Cobber Airbill No. 12 849 169 Cl. 1003 262 4 Number of Containers Shipping Information Carrier: UPS 96hr - 0.008 mg/L Lindane 96hr - 0.08 mg/L Lindane 96hr - 8.0 mg/L Lindane 96hr - 0.8 mg/L Lindane 96hr - 0.004 mg/L Penta 96hr -- 0.04 mg/L Penta 96hr - 0 mg/L Lindane 96hr - 4.0 mg/L Penta 96hr - 0.4 mg/L Penta 96hr - 0 mg/L Penta Sample Description Phone No. 206-577-1287 Project No. 06-28-04-45 Sampled by G.A. Buhler Helle Anderson NAS# 0840G NAS# 0847G NAS# 0848G NAS# 0841G NAS# 0842G NAS# 0846G NAS# 0844G NAS# 0843G NAS# 0845G NAS# 0849G Report Attention Time Sampled 1710 1710 1710 1710 1650 1650 1650 1650 1650 1710 Address 200 West Mercer St., Suite 401 Windward Environmental 11-13-06 11-13-06 11-13-06 11-13-06 11-13-06 11-13-06 11-13-06 11-13-06 11-13-06 11-13-06 City, State, Zip code
Seattle, WA 98119
Lab Sample Date
No.

'						**************************************
IJ <u></u> .	Signature	Print Name	Company	Date	Time	Cooler Custody Seal
ł.,	Relinquished by Time	Juie Fine	NAS	11-14-0	11-14-06 1030	Present / Not Present
<u> </u>	Received by					Intact / Not Intact
1	Relinquished by					Internal Cooler Temperature Upon Lab Receipt (8C)
1	Received by				:	
Ł	Relinquished by					
L	Received by laboratory				-	
ز_	the same of the sa					

Page 70 of 73

Client Name

Northwestern Aquatic Sciences
3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365
Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

Internal Cooler Temperature Upon Lab Receipt (°C) Present / Not Present Intact / Not Intact Comments Cooler Custody Seal 0000/ Time 11/70 Date × Diazinon × × Airbill No. 1 たる作り(4 Number of Containers Company O1100 5 2657 Carrier: UPS NAS# 0858G Day 0-0.04 mg/L Diazinon NAS# 0856G Day 0-4.0 mg/L Diazinon NAS# 0855G Day 0 - 40 mg/L Diazinon NAS# 0857G Day 0-0.4 mg/L Diazinon NAS# 0859G Day 0 - 0 mg/L Diazinon Sample Description 206-577-1287 Project No. 06-28-04-45 Sampled by G.A. Buhler Phone No. Report Attention Helle Andersen Print Name Time Sampled 1325 1325 1325 200 West Mercer St., Suite 401 1325 1325 Windward Environmental 11-16-06 11-16-06 11-16-06 11-16-06 11-16-06 Date Sampled City, State, Zip code Seattle, WA 98119 Signature Relinquished by Received by Jaboratory Relinquished by Relinquished by Lab Sample No. Received by Received by

Page 71 of 73

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7235 Fay: 541-265-2790 www.magnetic con

:65-2799, www.nwaquatic.com	Testing Required
7.75, Fax: 541-2	ipping Information
1el: 541-265-/	Project No. Shi

				Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com	, Fax: 541-2	65-2799, ww	'w.nwaquatic.c	om		
Client Name Windward	Client Name Windward Environmental	le B	Project No. 06-28-04-45	Shipping	Shipping Information	Tes	Testing Required			
				Carrier UPS	JPS					_
Address 200 West N	Address 200 West Mercer St., Suite 401	lite 401	Phone No. 206-577-1287							
City, State, Zip code Seattle, WA 98119	ip code 4 98119		Report Attention Helle Andersen	Airbill No.: 1Z 0110032964	Airbill No.: 1Z849169 0110032964	nonize				
Lab Sample No.	Date Sampled	Time Sampled	Sampled by G.A. Buhler		Number of Containers	D!				
			Sample Description						Comments	
	11-18-06	1330	NAS# 0860G 48-hr - 40 mg/L dizinon OLD	inon OLD		×			Comments	
	11-18-06	1330	NAS# 0861G 48-hr 4.0 mg/L diz	mg/L dizinon OLD	-	×				
	11-18-06	1330	NAS# 0862G 48-hr - 0.4 mg/L diz	mg/L dizinon OLD	1	×				1
	11-18-06	1330	NAS# 0863G 48-hr - 0.04 mg/L dizinon OLD	lizinon OLD	1	×		-		
	11-18-06	1330	NAS# 0864G 48-hr - 0 mg/L dizinon OLD	non OLD	ı.	×				
	11-18-06	1320	NAS# 0865G 48-hr - 40 mg/L dizinon NEW	inon NEW		×				
	90-81-11	1320	NAS# 0866G 48-hr 4.0 mg/L diz	mg/L dizinon NEW	-	×				
	11-18-06	1320	NAS# 0867G 48-hr - 0.4 mg/L dizi	mg/L dizinon NEW	1	×				
	11-18-06	1320	NAS# 0868G 48-hr - 0.04 mg/L dizinon NEW	izinon NEW		×				
	11-18-06	1320	NAS# 08169 48-hr - 0 mg/L dizinon NEW	on NEW	1	×				T
Signature Relinguished by	Signature		Print Name		Company		Date	Time	Cooler Custody Seal	1
Paris in his many	ć.								Present / Not Present	
Received by				·				-	Intact / Not Intact	
Relinquished by	by								(Internal Cooler Temperature Thom I sh	
Received by					<u></u>			·.	Receipt (°C)	
Relinquished by	by									
Received by laboratory	aboratory									1.50

Page 72 of 73

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

Client Name		Project No.	Shipping	Shipping Information		Testing Required			
ard Environmen	tal	06-28-04-45	Carrier UPS	Sdi					
Address 200 West Mercer St., Suite 401	uite 401	Phone No. 206-577-1287)	u			-	
City, State, Zip code Seattle, WA 98119		Report Attention Helle Andersen		Airbill No.: 12849169 0110032679	onizsi				
Lab Sample Date No. Sampled	Time Sampled	Sampled by G.A. Buhler		Number of Containers	D		· · · · · · · · · · · · · · · · · · ·		
	·	Sample Description	ption			•			Comments
11-20-06	1510	NAS# 0870G 96-hr 4	40 mg/L dizinon		×				
11-20-06	1510	NAS# 0871G 96-hr 4	4.0 mg/L dizinon	1	×				
11-20-06	1510	NAS# 0872G 96-hr 0	0.4 mg/L dizinon	I	×				
11-20-06	1510	NAS# 0873G 96-hr - 0.	.04 mg/L dizinon,	1	×				
11-20-06	1510	NAS# 0874G 96-hr	0 mg/L dizinon		×				
Signature		Print Name		Company			Date	Time	Cooler Custody Seal
Refinquished by Received by		my blikn		Alf.		2-//	C.	002/	Present / Not Present Inact / Not Inact
Reinquished by									Internal Cooler Temperature Upon Lab Receipt (°C)
Received by									
Relinquished by									
Received by laboratory			- Laboratoria						

Page 73 of 73

	Date	Temp	рН	DO	Cond	Hard	Alk	NH3	comments
Siletz River	10/17/2006	13.6	5.3	8.2	62	26	20		rec'ing data
Water	10/17/2006					26			J
	10/18/2006	12.4	6.0	9.6	95	26	20		rec'ing data
	10/23/2006	11.5	6.8	8.4	75	26	20		rec'ing data
	10/24/2006	10.6	6.0	8.8	150	51	90		rec'ing data
Siletz River	Mean	12.0	6.0	8.8	96	31	38		
Water	SD	1.3	0.6	0.6	39	11	35		
	n	4	4	4	4	5	4		
	Min	10.6	5.3	8.2	62	26	20		
	Max	13.6	6.8	9.6	150	51	90		
Lab Holding									
holding for tests	10/18/2006	12.3	7.4	10.7	135	43	50		
31-35	10/19/2006	12.5	7.1	10.8	133	51	60		
	10/20/2006	12.7	7.5	10.6	120	51	30		
	10/21/2006	12.5	7.5	11.1	130	43	30		
	10/22/2006	12.2	7.1	10.9	125	51	60		
	10/23/2006	12.6	6.9	10.8	120	51	30		
	10/24/2006	12.3	7.4	10.8	130	51	50		
	10/25/2006	12.4	6.9	10.8	130	43	30	<0.1	
	10/26/2006	12.6	7.4	10.6	130	43	50	<0.1	
	10/27/2006	12.4	7.0	11.2	130	43	50	<0.1	
	10/28/2006	12.4	7.1	10.8	130	43	40	<0.1	
	10/29/2006	12.9	8.1	10.8	135	51	50	<0.1	
	10/30/2006	12.7	8.0	10.4	130	43	50	<0.1	
	10/31/2006	12.8	7.8	10.2	130	43	40	<0.1	
	11/1/2006	12.6	7.9	10.3	135	43	40	<0.1	
	11/2/2006	12.1	8.2	10.3	130	51	50	<0.1	
	11/3/2006	11.8	7.9	10.8	130	51	40	<0.1	
	11/4/2006	11.2	8.0	11.6	130	51	40	<0.1	
	11/5/2006	11.6	7.9	11.2	135	51	50	<0.1	
	11/6/2006	13.2	7.9	13.0	119	51	30	<0.1	
	11/7/2006	11.9	7.7	11.4	130	51	50	<0.1	
	11/8/2006	11.5	8.0	11.2	125	51	50	<0.1	
	11/9/2006	11.8	8.0	11.3	125	51	40	<0.1	tests 31 - 34 began 11/9/06
holding for test 35	11/10/2006	11.7	7.9	11.2	115	43	50	<0.1	
continues	11/11/2006	11.2	7.7	11.1	120	51	40	<0.1	
	11/12/2006	11.3	7.8	11.0	130	51	40	<0.1	
	11/13/2006	11.4	7.6	11.0	130	51	40	<0.1	

Tests 31 - 34:	Mean	12.3	рп 7.6	10.9	129	паго 48	44	NH3	1
		Temp	рН	DO	Cond	Hard	Alk	NH3	•
	12/8/2006	21.9	7.5	8.8	150	51	40	<0.1	test 37 (12C & 22C) began 12/8/06
	12/7/2006	21.1 21.9	7.4 7.5	8.8	150 150	51 51	50 40	<0.1 <0.1	toot 27 (420, 9, 220) because 40/0/00
	12/6/2006	21.6	7.5	8.5	155	51	50	<0.1	
	12/5/2006	20.4	7.3	8.7	170	51	40	<0.1	
	12/4/2006	19.3	7.2	9.0	155	51	40	<0.1	
for test #37	12/3/2006	18.5	7.2	8.8	160	51	30	<0.1	
acclimation to 22C	12/2/2006	17.9	7.3	8.9	140	51	30	<0.1	
temperature	12/1/2006	16.9	7.3	8.8	145	51	30		
	12/1/2006	16.3	7.4	9.4	140	60	40	<0.1	test 36 (12C & 17C) began 12/1/06
	11/30/2006	17.0	7.5	9.3	140	60	40	<0.1	
	11/29/2006	16.8	7.7	9.4	140	51	50	<0.1	
	11/28/2006	16.8	7.8	9.6	140	60	50	<0.1	
	11/27/2006	15.5	7.3	9.8	145	60	40	<0.1	
for test #36	11/26/2006	14.6	7.5	10.2	140	60	40	<0.1	
acclimation to 17C	11/25/2006	13.5	7.3	10.7	135	60	50	<0.1	
temperature	11/24/2006	12.2	7.2	11.4	125	51	40	<0.1	
	12/8/2006	12.2	7.4	11.0	120	51	40	0.3	test 37 (12C & 22C) began 12/8/06
	12/7/2006	12.0	7.4	10.9	135	60	40	0.2	
	12/6/2006	12.2	7.3	10.7	125	60	40	0.2	
	12/5/2006	11.0	6.9	11.2	140	51	40	0.3	
for test #37	12/4/2006	11.4	7.3	10.6	140	60	40	0.2	
acclimation to 12C	12/3/2006	11.8	7.0	10.4	145	51	30	0.4	
temperature	12/2/2006	11.9	7.3	11.2	130	51	40	0.3	
	12/1/2006	11.8	7.4	11.4	130	60	40	<0.1	test 36 (12C & 17C) began 12/1/06
	11/30/2006	11.7	7.5	11.0	135	60	40	0.2	
	11/29/2006	11.3	7.4	11.2	140	51	50	0.3	
	11/28/2006	11.6	7.5	11.2	150	60	50	0.4	
	11/27/2006	11.6	7.3	11.2	140	51	30	0.1	
for test #36	11/26/2006	11.9	7.6	11.2	140	60	50	<0.1	
acclimation to 12C	11/25/2006	12.0	7.6	11.3	135	60	50	0.1	
temperature	11/24/2006	11.6	7.4	11.6	120	51	40	<0.1	
	11/22/2006	11.4	7.2	11.2	125	51	50	<0.1	
experiments	11/21/2006							<0.1	flow off; all tanks fed
for temperature	11/20/2006	11.9	7.3	11.4	110	51	40	<0.1	
prior to acclimation	11/18/2006	11.8	7.4	11.2	120	51	40	<0.1	
Interim holding	11/17/2006	11.6	7.6	11.3	117	51	40	<0.1	
	11/16/2006	11.4	7.4	11.4	130	43	50	<0.1	test 35 began 11/16/06
	11/15/2006	11.8	7.6	10.9	132	51	40	<0.1	
	11/14/2006 11/15/2006	11.6	7.5	10.9	125 132	51 51	40	<0.1	

10/18/06-11/9/06	SD	0.5	0.4	0.6	5	4	9	
12.10,00 1.,0,00	n	23	23	23	23	23	23	16
	Min	11.2	6.9	10.2	119	43	30	<0.1
	Max	13.2	8.2	13.0	135	51	60	<0.1
								-
		Temp	рН	DO	Cond	Hard	Alk	NH3
Test 35:	Mean	12.1	7.6	11.0	128	48	44	
10/18/06-11/16/06	SD	0.6	0.4	0.5	5	4	9	
	n	30	30	30	30	30	30	23
	Min	11.2	6.9	10.2	115	43	30	<0.1
	Max	13.2	8.2	13.0	135	51	60	<0.1
		Temp	рН	DO	Cond	Hard	Alk	NH3
Test 36, 12C:	Mean	11.7	7.5	11.3	136	57	44	
11/24/06-12/1/06	SD	0.2	0.1	0.2	9	5	7	
	n	8	8	8	8	8	8	8
	Min	11.3	7.3	11.0	120	51	30	<0.1
	Max	12.0	7.6	11.6	150	60	50	0.4
Test 36, 17C:	Mean	15.3	7.5	10.0	138	58	44	
11/24/06-12/1/06	SD	1.8	0.2	0.7	6	4	5	
	n	8	8	8	8	8	8	8
	Min	12.2	7.2	9.3	125	51	40	<0.1
	Max	17.0	7.8	11.4	145	60	50	<0.1
	<u> </u>	Temp	рН	DO	Cond	Hard	Alk	NH3
Test 37, 12C:	Mean	11.8	7.2	10.9	133.6	55	39	
12/2/06-12/8/06	SD	0.4	0.2	0.3	9.0	5	4	
	n	7	7	7	7	7	7	7
	Min	11.0	6.9	10.4	120.0	51	30	0.2
	Max	12.2	7.4	11.2	145.0	60	40	0.4
T	1.0	10 =		2.5	4.50		2.5	
Test 37, 22C:	Mean	19.7	7.3	8.8	153	51	39	
12/1/06-12/8/06	SD	1.8	0.1	0.1	9	0	8	
	n	8	8	8	8	8	8	7
	Min	16.9	7.2	8.5	140	51	30 50	<0.1
	Max	21.9	7.5	9.0	170	51	50	<0.1

Aniline	Test 686-31						
mg/L	DAY	TEMP	рН	DO	COND	HARD	ALK
1,000	0	12.8	7.6	10.5	120	51	440
100	0	12.8	7.4	10.4			
10	0	12.9	7.4	10.4			
1	0	12.8	7.2	10.5			
0	0	12.8	7.2	10.4	110	51	40
1,000	1	12.4	7.4	10.3			
100	1	12.4	7.4	10.2			
10	1	12.3	7.4	10.4			
1	1	12.4	7.3	10.3			
0	1	12.3	7.2	10.2			
1,000	2	12.6	7.5	10.1	125	51	460
100	2	12.5	7.4	10.6			
10	2	12.4	7.4	10.6			
1	2	12.5	7.3	10.6			
0	2	12.4	7.3	10.6	120	51	40
1,000	3	12.8	7.6	10.4			
100	3	12.8	7.5	10.2			
10	3	12.6	7.4	9.9			
1	3	12.8	7.5	10.1			
0	3	12.9	7.5	10.2			
1,000	4	12.5	7.5	10.2	125	51	440
100	4	12.6	7.3	10.1			
10	4	12.3	7.3	10.3			
1	4	12.5	7.2	10.2			
0	4	12.4	7.2	10.2	120	51	40
	Mean	12.6	7.4	10.3			
	SD	0.2	0.1	0.2			
	n	25	25	25	6	6	6
	Min	12.3	7.2	9.9	110	51	40
	Max	12.9	7.6	10.6	125	51	460

Copper	Test 686-32						
mg/L	DAY	TEMP	рН	DO	COND	HARD	ALK
1.0	0	12.2	6.9	10.8	110	51	40
0.1	0	12.1	7.1	10.8			
0.01	0	12.2	7.1	10.7			
0.001	0	12.1	7.1	10.8			
0	0	12.3	7.1	10.6	110	51	40
1	1	12.2	7.2	10.6			
0.1	1	12.3	7.2	10.4			
0.01	1	12.3	7.2	10.2			
0.001	1	12.4	7.2	10.5			
0	1	12.6	7.2	10.3			
1.0	2	12.2	7.3	10.7	120	51	40
0.1	2	12.3	7.3	10.6			
0.01	2	12.3	7.3	10.6			
0.001	2	12.3	7.3	10.6			
0	2	12.6	7.3	10.4	115	51	40
1.0	3	12.7	7.5	10.4			
0.1	3	12.7	7.6	10.3			
0.01	3	12.8	7.6	10.5			
0.001	3	12.6	7.6	10.4			
0	3	12.8	7.6	10.4			
1.0	4	12.1	7.3	10.5	115	51	40
0.1	4	12.1	7.3	10.3			
0.01	4	12.1	7.2	10.4			
0.001	4	12.1	7.2	10.3			
0	4	12.1	7.2	10.2	110	51	40
	Mean	12.3	7.3	10.5			
	SD	0.2	0.2	0.2			
	n	25	25	25	6	6	6
	Min	12.1	6.9	10.2	110	51	40
	Max	12.8	7.6	10.8	120	51	40

Pentachlo	rophenol	Test 686-33					
mg/L	DAY	TEMP	рН	DO	COND	HARD	ALK
4.0	0	12.2	7.2	10.4	115	51	40
0.4	0	12.2	7.1	10.4			
0.004	0	12.2	7.1	10.2			
0.004	0	12.2	7.1	10.4			
0	0	12.3	7.1	10.4	110	51	40
4.0	1	12.2	7.4	10.2			
0.4	1	12.2	7.3	10.4			
0.004	1	12.2	7.3	10.4			
0.004	1	12.2	7.2	10.2			
0	1	12.2	7.2	10.3			
4.0	2	12.2	7.5	10.5	125	51	40
0.4	2	12.2	7.4	10.5			
0.004	2	12.2	7.3	10.4			
0.004	2	12.3	7.3	10.6			
0	3	12.3	7.3	10.5	120	51	40
4.0		12.7	7.6	10.3			
0.4	3	12.7	7.6	10.4			
0.004	3	12.7	7.6	10.2			
0.004	3	12.8	7.6	10.3			
0	3	12.8	7.5	10.2			
4.0	4	12.1	7.3	10.6	115	51	40
0.4	4	12.1	7.3	10.6			
0.004	4	12.1	7.3	10.5			
0.004	4	12.1	7.2	10.4			
0	4	12.1	7.2	10.4	115	51	40
	Mean	12.3	7.3	10.4			
	SD	0.2	0.2	0.1			
	n	25	25	25	6	6	6
	Min	12.1	7.1	10.2	110	51	40
	Max	12.8	7.6	10.6	125	51	40

Lindane	Test 686-3	4					
mg/L	DAY	TEMP	рН	DO	COND	HARD	ALK
8.0	0	12.2	7.3	10.4	115	51	40
0.8	0	12.2	7.3	10.2			
0.08	0	12.3	7.2	10.2			
0.008	0	12.1	7.2	10.4			
0	0	12.2	7.2	10.2	115	51	40
8.0	1	12.1	7.5	10.1			
8.0	1	12.1	7.4	10.2			
0.08	1	12.2	7.3	10.5			
0.008	1	12.2	7.3	10.2			
0	1	12.1	7.3	10.4			
8.0	2	12.2	7.5	10.4	120	51	40
8.0	2	12.2	7.4	10.5			
0.08	2	12.2	7.4	10.4			
0.008	2	12.1	7.4	10.8			
0	3	12.2	7.3	10.6	120	51	40
8.0		12.7	7.6	10.4			
8.0	3	12.6	7.6	10.2			
0.08	3	12.8	7.6	10.3			
0.008	3	12.8	7.5	10.3			
0	3	12.6	7.5	10.4			
8.0	4	12.1	7.4	10.3	115	51	40
8.0	4	12.2	7.3	10.2			
0.08	4	12.2	7.3	10.4			
0.008	4	12.3	7.3	10.3			
0	4	12.1	7.2	10.2	115	51	40
•	Mean	12.3	7.4	10.3			
	SD	0.2	0.1	0.2			
	n	25	25	25	6	6	6
	Min	12.1	7.2	10.1	115	51	40
	Max	12.8	7.6	10.8	120	51	40

Diazinon	Test 686-3	5					
mg/L	DAY	TEMP	рН	DO	COND	HARD	ALK
40	0	12.2	7.3	10.6	115	51	30
4.0	0	12.1	7.3	10.6			
0.4	0	12.2	7.3	10.5			
0.04	0	12.1	7.3	10.7			
0	0	12.1	7.3	10.6	115	51	30
40	1	11.8	7.1	10.6			
4.0	1	11.8	7.1	10.5			
0.4	1	11.7	7.1	10.5			
0.04	1	11.8	7.1	10.4			
0	1	11.8	7.1	10.5			
40	2	11.9	7.3	10.4	120	51	30
4.0	2	12.0	7.3	10.3			
0.4	2	11.9	7.2	10.5			
0.04	2	11.7	7.2	10.6			
0	2	11.8	7.2	10.6	125	51	30
40	3	11.8	7.3	10.6			
4.0	3	11.7	7.3	10.4			
0.4	3	11.8	7.3	10.3			
0.04	3	11.8	7.3	10.3			
0	3	11.9	7.3	10.2			
40	4	11.9	7.3	10.5	120	51	30
4.0	4	11.8	7.3	10.6			
0.4	4	11.8	7.3	10.5			
0.04	4	11.9	7.3	10.3			
0	4	12	7.3	10.4	120	51	40
	Mean	11.9	7.2	10.5			
	SD	0.1	0.1	0.1			
	n	25	25	25	6	6	6
	Min	11.7	7.1	10.2	115	51	30
	Max	12.2	7.3	10.7	125	51	40

Temperature Experiment #1			Test 686-36				
12C	DAY	TEMP	рН	DO	COND	HARD	ALK
12C	0	12.6	7.3	11	120	51	30
12C	1	12.2	7.4	11.2	120		
12C	2	12.1	6.9	10.2	125	51	30
12C	3	12.2	7.4	10.4	120		
12C	4	12.5	6.9	10.6	130	51	30
	Mean	12.3	7.2	10.7	123	51	30
	SD	0.2	0.3	0.4	4	0	0
	n	5	5	5	5	3	3
	Min	12.1	6.9	10.2	120	51	30
	N/Last	40.0	7 1	44.0	130	51	30
	Max	12.6	7.4	11.2	130	อเ	30
17C	DAY	TEMP	7.4 pH	DO DO	COND	HARD	ALK
17C							
	DAY	TEMP	рН	DO	COND	HARD	ALK
17C	DAY 0	TEMP 16.5	рН 7.3	DO 9.7	COND 125	HARD	ALK
17C 17C	DAY 0 1	TEMP 16.5 17.0	pH 7.3 7.2	DO 9.7 9	COND 125 135	HARD 51	ALK 30
17C 17C 17C	DAY 0 1 2	TEMP 16.5 17.0 16.5	pH 7.3 7.2 6.8	9.7 9 9.1	COND 125 135 140	HARD 51	ALK 30
17C 17C 17C 17C	DAY 0 1 2 3	TEMP 16.5 17.0 16.5 17.3	pH 7.3 7.2 6.8 7.4	9.7 9 9.1 8.8	COND 125 135 140 130	HARD 51 51	30 30
17C 17C 17C 17C	DAY 0 1 2 3 4	TEMP 16.5 17.0 16.5 17.3 17.0	pH 7.3 7.2 6.8 7.4 7.0	9.7 9 9.1 8.8 9.0	125 135 140 130 140	HARD 51 51 51	ALK 30 30 30
17C 17C 17C 17C	DAY 0 1 2 3 4 Mean	TEMP 16.5 17.0 16.5 17.3 17.0	pH 7.3 7.2 6.8 7.4 7.0 7.1	9.7 9 9.1 8.8 9.0	COND 125 135 140 130 140	51 51 51 51 51	ALK 30 30 30 30
17C 17C 17C 17C	DAY 0 1 2 3 4 Mean SD	TEMP 16.5 17.0 16.5 17.3 17.0 16.9 0.4	pH 7.3 7.2 6.8 7.4 7.0 7.1 0.2	9.7 9.1 8.8 9.0 9.1 0.3	COND 125 135 140 130 140 134 7	51 51 51 51 51 0	30 30 30 30 30 0

Temperature Experiment #2			Test 686-37				
12C	DAY	TEMP	рН	DO	COND	HARD	ALK
12C	0	11.9	7.4	10.6	115	51	30
12C	1	12.3	7.0	10.1	120		
12C	2	12.6	7.1	10.2	110	51	30
12C	3	12.1	7.0	10.9	130		
12C	4	12.2	7.0	10.8	125	51	40
	Mean	12.2	7.1	10.5	120	51	33
	SD	0.3	0.2	0.4	8	0	6
	n	5	5	5	5	3	3
	Min	11.9	7.0	10.1	110	51	30
	I	400	- 4	400	400		40
	Max	12.6	7.4	10.9	130	51	40
22C	Max DAY	12.6 TEMP	7.4 pH	10.9 DO	COND	HARD	ALK
22C 22C							
22C 22C	DAY 0 1	TEMP	рН	DO	COND	HARD 51	ALK
22C	DAY 0 1 2	TEMP 21.8	рН 7.3	DO 8.8	COND 140	HARD	ALK
22C 22C	DAY 0 1	TEMP 21.8 23.0	pH 7.3 6.9	B.8 8.2	COND 140 140	HARD 51	ALK 30
22C 22C 22C	DAY 0 1 2	TEMP 21.8 23.0 22.6	pH 7.3 6.9 7.3	8.8 8.2 8	COND 140 140 140	HARD 51	ALK 30
22C 22C 22C 22C	DAY 0 1 2 3	TEMP 21.8 23.0 22.6 21.8	pH 7.3 6.9 7.3 7.2	8.8 8.2 8 8.2	COND 140 140 140 160	HARD 51 51	30 40
22C 22C 22C 22C	DAY 0 1 2 3 4	TEMP 21.8 23.0 22.6 21.8 22.2	pH 7.3 6.9 7.3 7.2 7.2	8.8 8.2 8 8.2 8.3	140 140 140 140 160 150	HARD 51 51 51	ALK 30 40 40
22C 22C 22C 22C	DAY 0 1 2 3 4 Mean	TEMP 21.8 23.0 22.6 21.8 22.2 22.3	pH 7.3 6.9 7.3 7.2 7.2 7.2	8.8 8.2 8 8.2 8.3	140 140 140 160 150	51 51 51 51 51	ALK 30 40 40 37
22C 22C 22C 22C	DAY 0 1 2 3 4 Mean SD	TEMP 21.8 23.0 22.6 21.8 22.2 22.3 0.5	pH 7.3 6.9 7.3 7.2 7.2 7.2 0.2	8.8 8.2 8 8.2 8.3 8.3	COND 140 140 140 160 150 146 9	51 51 51 51 51 0	ALK 30 40 40 37 6

Test ID	Test No.	Nom. Conc. mg/L	Number Exposed	Number Suviving	% Surv.
Aniline	686-31	1,000	5	0	0
		100	5	5	100
		10	5	5	100
		1	5	5	100
		0	5	5	100
Copper	686-32	1	5	0	0
		0.1	5	2	40
		0.01	5	5	100
		0.001	5	5	100
		0	5	5	100
Penta	686-33	4	5	0	0
		0.4	5	0	0
		0.04	5	5	100
		0.004 0	5 5	5 5	100 100
Lindane	686-34	8	5	0	0
Linuane	000-34	0.8	5 5	5	100
		0.08	5	5	100
		0.008	5	5	100
		0	5	5	100
Diazinon	686-35	40	5	0	0
		4	5	5	100
		0.4	5	5	100
		0.04	5	5	100
		0	5	5	100
17C	686-36	17C	5	5	100
		17C	5	5	100
		17C	5	5	100
		17C	5	5	100
12C	686-36	12C	5	5	100
		12C	5	5	100
		12C	5	5	100
		12C	5	5	100
22C	686-37	22C	5	5	100
		22C	5	4	80
		22C	5	5	100
100	200.07	22C	5	5	100
12C	686-37	12C	5	5	100
		12C	5	5	100
		12C	5	5	100
		12C	5	5	100

Test ID	Test No.	Length (mm)	Weight (g	a)		Length (mm)	Weight (g)
Aniline	686-31	72	0.	49	Mean	74	0.54
		67	0.	38	SD	6	0.15
		71	0.	47	n	5	5
		79	0.	63	Min	67	0.38
		83	0.	75	Max	83	0.75
Copper 686	686-32	55		25	Mean	54	0.26
		51		19	SD	3	
		50		19	n	5	
		56		24	Min	50	
		58		42	Max	58	
Penta	686-33	55		25	Mean	57	
		51		18	SD	14	
		50		15	n	5	
		49		17	Min	49	
		82		66	Max	82	
Lindane	686-34	59		27	Mean	69	
		58		27	SD	12	
		68		37	n	5	
		70		43	Min	58	
		88		79	Max	88	
Diazinon	686-35	70		41	Mean	74	
		90		90	SD	9	
		70		38	n	5	
		74		53	Min	68	
470	222.22	68		40	Max	90	
17C	686-36	80		72	Mean	74	
		71		46	SD	7	
		65		44 55	n Min	5	
		72 82		55 70	Min	65 82	
12C	686-36	88		78 00	Max	66	
120	000-30	72		66	Mean SD	15	
		60		36		5	
		64		42	n Min	46	
		46		33	Max	88	
22C	686-37	70		56	Mean	64	
220	000-37	58		32	SD	7	
		55		31	n	5	
		68		48	Min	55	
		70			Max	70	
12C	686-37	65		41	Mean	70	
120	555 51	62		30	SD	70	
		80		66	n	, 5	
		70		48	Min	62	
		71		55	Max	80	
-	Mean	67		45			2.30
	SD	11		20			
	n	45		-5 45			
	Min	46		15			
	Max	90		00			

APPENDIX C. TOXICITY TESTING VALIDATION REPORT

QUALITY ASSURANCE EVALUATIONS OF LAMPREY AMMOCOETE TOXICITY TESTING FOR PORTLAND HARBOR RI/FS: PHASE 1

Final Report 23 March 2007

For

Windward Environmental LLC Seattle, Washington

Prepared By

Dinnel Marine Resources Anacortes, WA

1.0 INTRODUCTION

Northwestern Aquatic Sciences (NAS) has been retained by Windward Environmental LLC to determine the sensitivity of lamprey (*Lampetra* sp.) larvae (ammocoetes) to various chemicals as part of the Portland Harbor RI/FS Round 3 Project. Lamprey tests are being conducted in two phases: Phase 1 explored methods for successful holding in the laboratory, generated range-finding data for five chemicals (aniline, lindane, pentachlorophenol, copper and diazinon), and evaluated ammocoete sensitivity to elevated temperatures (17 and 22 °C). Phase two, to be conducted during the spring/summer of 2007, will determine the toxicity of the same five chemicals (plus naphthalene) using definitive flow-through tests. NAS is a State of Washington accredited laboratory (Lab ID number C1238, expiration: 30 September 2007) and is certified to perform a wide range of bioassay testing of water, effluents and sediments. A copy of NAS' accreditation certificate and Scope of Accreditation appears in Appendix 1. There is no similar certification program in the State of Oregon.

This report summarizes the Quality Assurance/Quality Control (QA/QC) evaluations of the Phase I testing conducted by NAS. The QA steps taken to ensure high quality data and maximum data completeness before, during and after Phase 1 testing are described in this report. Major QA tasks included the following:

- A pre-test review of the laboratory test protocol and Standard Operating Procedures (SOPs) for the lamprey testing
- One audit of tests in progress
- An initial evaluation of all data for completeness, correct data entries, and accurate transcription
- A final QA evaluation of overall data quality and usability (this report)

2.0 QUALITY ASSURANCE AUDIT RESULTS

2.1 REVIEW OF LABORATORY PROTOCOL AND SOPS

There are no published protocols for conducting toxicity tests with lampreys, other than the ASTM and EPA generic protocols for conducting tests with fish and other aquatic life (ASTM 1996; EPA 2002). For this testing program, general guidance was provided by Windward Environmental (2006) and a draft protocol was written by NAS (Protocol No. NAS-686-Lamprey-rf) and reviewed by Dinnel Marine Resources prior to beginning the Phase 1 chemical range finding and elevated temperature testing. DMR found this draft protocol to be well written and reasonably complete given the lack of previous test experiences with this species.

2.2 TEST-IN-PROGRESS AUDIT

An informal test-in-progress "audit" was conducted by Dr. Paul Dinnel on 11 November 2006 during which time the following four chemicals were being tested: aniline, lindane, pentachlorophenol and copper. All testing procedures appeared to conform with NAS' draft lamprey protocol and no deviations were noted.

2.3 INITIAL DATA EVALUATIONS

All raw data forms and electronic database files were reviewed for completeness and fidelity of transcription to electronic formats. A 100% check was made of all data entered into NAS' internal electronic database and checks were made of all Excel spreadsheet calculations and formulae. All errors, omissions, clarifications, or changes needed were documented and communicated to NAS. Only a couple of corrections to the draft data report were needed. A copy of DMR's comment letter to NAS appears in Appendix 2.

2.4 FINAL QA EVALUATION OF OVERALL DATA QUALITY AND USABILITY

Following corrections to the data report by NAS personnel, a 100% check of the corrections was made on 22 March 2007 to verify each correction. All corrections made by NAS were deemed satisfactory. Following this, an overall evaluation of data completeness and quality was accomplished. DMR's conclusions regarding data completeness and quality follow below.

2.4.1 Chain of Custody and Sample Holding

All chain of custody protocols were properly observed in transfers of test animals (from Windward Environmental) and toxicant samples for chemical analyses (to Columbia Analytical Services). Only one piece of information was missing on the chain of custody forms: the cooler temperature on receipt of lampreys on 18 October 2006.

2.4.2 Ammocoete Holding and Feeding

Lamprey ammocoetes were successfully held in a sand substrate in laboratory tanks supplied with flowing seawater. NAS followed the methods outlined in their draft protocol for holding and acclimation of the ammocoetes except that the feeding regime was modified based on information supplied by Mr. William Swink, a lamprey expert with the USGS.

2.4.3 Toxicity Tests

Range-finding toxicity tests of the chemicals identified above were tested in a static beaker test system using one replicate of each test concentration and 5 test animals per beaker. The tests appeared to meet all provisions outlined in NAS' draft protocol except for one minor water quality deviation: The dilution water hardness registered 51 mg/liter as CaCO₃ in all batches of test water. This was very slightly above the water hardness limit of 50 mg/liter specified in the draft Field Sampling Plan (Windward 2006). This slight deviation should not have significantly affected the results of the toxicity tests. Loading rates ranged from 0.46 to 0.96 g of fish per liter of test water. These loading rates were all below the draft protocol specified 1.1 g/liter limit (based on EPA recommendations). Control survival in all tests was 100%. All toxicity tests were effective in achieving total mortality in the highest test concentrations and no mortality in the lowest test concentrations, thereby identifying appropriate test concentrations to be used in Phase 2 definitive testing of these same chemicals. The results of the toxicity tests will need to be paired with the chemical analyses conducted by Columbia Analytical Services to derive the actual chemical effects levels.

One chemical (naphthalene) was eliminated from the list of chemicals to be tested during Phase 1 when NAS had difficulty maintaining the concentration of this volatile chemical in the test beakers. All naphthalene testing will be conducted during Phase 2 using a flow through test system. In addition, two temperature stress tests, one at 17 and the other at 22 °C, were added to the test schedule for Phase 1 (see below).

2.4.4 Temperature Tests

Two temperature tests assessed possible stress to lamprey ammocetes, the first at 17 °C and the second at 22 °C. Each temperature was paired with a temperature of 12 °C, which acted as the control. Ammocetes were acclimated to their respective test temperatures at the rate of about 0.5 to 1 °C per day prior to testing. Ammocetes were tested in a static beaker test system using one replicate for each temperature and 5 test animals per beaker. The tests appeared to meet all provisions outlined in NAS' draft protocol except for one minor water quality deviation: The dilution water hardness registered 51 mg/liter as CaCO₃ in all batches of test water. This was very slightly above the water hardness limit of 50 mg/liter specified in the draft Field Sampling Plan (Windward 2006). This slight deviation should not have significantly affected the results of the temperature tests. Loading rates ranged from 0.79 to 1.05 g of fish per liter of test water. These loading rates were all below the draft protocol specified 1.1 g/liter limit (based on EPA recommendations). Control survival (12 °C) in all tests was 100% and survival in the elevated temperature treatments was 100% (17 °C) and 95% (22 °C).

2.4.5 Conclusions

NAS appears to have successfully completed Phase 1 testing. This phase of testing has validated methods for pre-test holding, acclimation and feeding of ammocetes and identified appropriate concentrations for definitive tests of the five chemicals to be tested in Phase 2. The two temperature tests were also successfully completed and showed that ammocetes are probably not unduly stressed at 17 °C. However, slight mortality (5%) at 22 °C indicates the possibility that ammocetes might be nearing their upper limit for temperature stress, although the mortality of just 1 of the 20 fish tested at this temperature could have easily been due to another factor. Should it be anticipated that future toxicity tests might be run in 22 °C test water, consideration should be given to refining the upper temperature stress limit by running an additional test with temperatures in the range of 20 to 30°C.

3.0 REFERENCES

- ASTM (American Society for Testing and Materials). 1996. Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. E729-96. American Society for Testing and Materials, Philadelphia, PA.
- EPA (U.S. Environmental Protection Agency). 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (Fifth Edition). EPA-821-R-02-012. Office of Water, U.S. EPA, Washington, D.C.
- Windward Environmental. 2006. Portland Harbor RI/FS, Round 3: Lamprey ammocoete toxicity testing field sampling plan (draft). Prepared for the Lower Willamette Group by Windward Environmental LLC, Seattle, WA. 20 pp.

Appendix 1

Northwestern Aquatic Sciences' State of Washington Accreditation Certificate and Scope of Accreditation

Appendix 2

Comments by Dinnel Marine Resources to Northwestern Aquatic Sciences Following DMR's QA Review of the Draft Toxicity Test Report

Dinnel Marine Resources 1519 13th St. Anacortes, WA 98221

360-299-8468

16 March 2007

Ms. Michele Redmond Northwestern Aquatic Sciences PO Box 1437 Newport, OR 97365

Dear Michele:

I have completed my audit of your draft Phase 1 Portland Harbor Lamprey Ammocoete testing program. As usual, your draft data report is in excellent shape, with just a few minor items needing further attention.

- 1. Appendix II, page 3 of 73: The last temperature entry (for 12-8-06) appears to be 12.2 on my photocopy, but is recorded as 11.2 in the Excel database (page 49 of 73). Please review.
- 2. Test Data Analysis Records appendix, page 57 of 73: The two samples at the bottom of the page (22C and 12C) show 5 replicates, whereas only 4 replicates were tested (?).
- 3. Should you desire "true perfection" in your final report, I noted that on the 5th line under "Test Organisms" (page 2 of 7 of the main report), the word "measure" should be "measured". Nit picking it is!

Should you have any questions, please call me at 360-299-8468 or contact me via e-mail at (b) (6) Thank you and your staff for your excellent work.

Sincerely,

Pla. Sil

Paul Dinnel, Project QA Monitor

Mashington of Ecology

This is to certify that

Northwestern Aquatic Sciences Newport, OR

listed on the accompanying Scope of Accreditation. This certificate is effective October 1, 2006, has complied with provisions set forth in Chapter 173-50 WAC and is hereby recognized by the Department of Ecology as an ACCREDITED LABORATORY for the analytical parameters and shall expire September 30, 2007.

Witnessed under my hand on August 21, 2006.

Stewart Mode

Stewart M. Lombard

Lab Accreditation Unit Supervisor

Laboratory ID C1238

Scope of Accreditation

Northwestern Aquatic Sciences

Newport, OR

is accredited by the State of Washington Department of Ecology to perform analyses for the parameters listed below using the analytical methods indicated. This Scope of Accreditation may apply to any of the following matrix types: non-potable water, drinking water, solid and chemical materials, and air and emissions. Accreditation for all parameters is final unless indicated otherwise in a note. Accreditation is for the latest version of a method unless otherwise specified in a note. EPA refers to the U.S. Environmental Protection Agency. SM refers to American Public Health Association's publication, Standard Methods for the Examination of Water and Wastewater, 18th, 19th or 20th Edition, unless otherwise noted. ASTM stands for the American Society for Testing and Materials. PSEP stands for Puget Sound Estuary Program. Other references are detailed in the notes section.

Matrix Type/Parameter Name	Reference	Method Number Notes	
Non-potable Water	Neigrafice.	Method Hanber Hotes	
Ampelisca abdita	EPA	100.4 4	
Ampelisca abdita	PSEP	1995	
Ampelisca abdita	ASTM	E 1367	
Atherinops affinis (West Coast)	EPA	1006.0 6,8	
Bioaccumulation, Bedded Sediments	EPA	600/R-93/183 7	
Bioaccumulation, Benthic Invert	ASTM	E 1688	
Bioconcentration, Fish, Mollusks	ASTM	E 1022	
Cerlodaphnla dubia	EPA	1002.0 2,8	
Ceriodaphnia dubia	EPA	2002.0 1,8	
Chironomus tentans	EPA	100.5 5	
Chironomus tentans	ASTM 👌 🛴	E 1706	
Chironomus tentans	EPA	100.2 5	
Corbicula fluminea	ASTM	E 1688	
Crassostrea gigas	PSEP	1995	
Crassostrea gigas (West Coast)	EPA	1005.0 6,8	
Cyprinodon variegatus	EPA	1004.0 3,8	
Cyprinodon variegatus	EPA	2004.0 1,8	
Dangerous Waste Static Salmonid	WDOE	80-12 Part A	
Daphnia magna	EPA	2021.0 1,8	
•		·	

Washington State Department of Ecology

Scope of Accreditation Report for Northwestern Aquatic Sciences

Laboratory Accreditation Unit

Date Printed: 8/21/2006

Scope Expires:

vires: 9/30/2007

Page 1 of 3

Matrix Type/Parameter Name Daphnia pulex	Reference EPA	Method Number 2021.0	Notes 1,8
Dendraster excentricus	ASTM	E 1563	
Dendraster excentricus	PSEP	1995	
Dendraster excentricus (West Coast)	EPA	1008.0	6,8
Eohaustorius estuarius	ASTM	E 1367	
Eohaustorius estuarius	PSEP	1995	
Eohaustorius estuarius	EPA	100.4	4
Holmesimysis costata	EPA	821-R-02-012	1,8
Holmesimysis costata (West Coast)	EPA	1007.0	6,8
Hyalella azteca	EPA	100.4	5 ,
Hyalella azteca	EPA :	100.1	5
Hyalella azteca	ASTM	E 1706	
Leptocheirus plumulosus	ASTM	E 1367	
Leptocheirus plumulosus	EPA	100.4	4
Lumbriculus variegatus	EPA	100.3	5
Lumbriculus variegatus	ASTM	E 1688	
Macoma spp.	ASTM	E 1688	
Menidia beryllina	EPA	1006.0	3,8
Menidia spp.	EPA	2006.0	1,8
Mysidopsis bahia	EPA	1007.0	3,8
Mysidopsis bahia	EPA	2007.0	1,8
Mytilus spp.	PSEP	1995	
Mytilus spp. (West Coast)	EPA:	1005.0	6,8
Neanthes arenaceodentata	PSEP	1995	•
Nereis/Neanthes spp.	ASTM	E 1688	
Oncorhynchus mykiss	EPA	2019.0	1,8
Pimephales promelas	EPA	2000.0	1,8
Pimephales promelas, Chronic	EPA	1000.0	2,8
Rhepoxynius abronius	EPA	100.4	4
Rhepoxynius abronius	PSEP	1995	

Washington State Department of Ecology

Date Printed: 8/21/2006

Scope of Accreditation Report for Northwestern Aquatic Sciences

Laboratory Accreditation Unit

Page 2 of 3

Scope Expires:

9/30/2007

Matrix Type/Parameter Name	Reference	Method Number	Notes
Rhepoxynius abronius	ASTM	E 1367	
Salvelinus fontinalis	EPA	2019.0	1,8
Strongylocentrotus purpuratus	ASTM	E 1563	
Strongylocentrotus purpuratus (WC)	EPA	1008.0	6,8
Strongylocentrotus purpuratus (WC)	EPA	600/R-95/136	6,8
Strongylocentrotus spp.	PSEP	1995	

Accredited Parameter Note Detail

(1) USEPA. "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms." EPA-821-R-02-012. Fifth Edition. Oct 2002. (2) USEPA. "Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms." EPA-821-R-02-013. Fourth Edition. Oct 2002. (3) USEPA. "Short-term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms." EPA-821-R-02-014. Fourth Edition. Oct 2002. (4) USEPA. "Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods." EPA 600/R/R-94/025. June 1994. (5) USEPA. "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates." EPA 600/R-99/064. Second Edition. March 2000. (6) USEPA. "Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms," EPA 600/R-95/136. Third Edition. Aug 1995. (7) USEPA. "Bedded Sediment Bioaccumulation Tests." EPA/600/R-93/183. Sept 1993. (8) Meets requirements of "Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria," Washington Dept. of Ecology, Pub. No. WQ-R-80, Rev. June 2005.

Authentication Signature

Stewart M. Lombard, Lab Accreditation Unit Supervisor

august 21, 2006

Laboratory Accreditation Unit

APPENDIX D. WATER CHEMISTRY VALIDATION REPORT

DATA QUALITY EVALUATION PORTLAND HARBOR

LAMPREY AMMOCOETE TOXICITY STUDY

Aniline - Method SW8270C
Pentachlorophenol - Method SW8151
gamma-BHC (Lindane) - Method SW8081A
Diazinon - Method SW8141A
Copper - Method E200.8

Prepared for:

Integral Consulting 7900 SE 28th Street, Suite 300 Mercer Island, Washington 98040

Integral Project: B01-01-58C

Prepared by:

EcoChem, Inc.
710 Second Avenue, Suite 660
Seattle, Washington 98104

EcoChem Project: C22110-5 March 5, 2007

Approved for Release:

Eric Strout

Project Manager/Technical Director

EcoChem, Inc.

DATA QUALITY EVALUATION

BASIS OF DATA EVALUATION

The data were validated using guidance and quality control (QC) criteria documented in the analytical methods; *Guidance on Environmental Data Verification and Validation* (EPA 2002c); *Portland Harbor RI/FS, Round 2, Quality Assurance Project Plan* (QAPP) (Integral 2004); *Addendum 7: Round 3 Chemical Analysis of Lamprey Ammocoete Toxicity Test Water* (Integral 2006), and *National Functional Guidelines for Organic and/or Inorganic Data Review* (USEPA 1994, 1999 & 2002).

Data qualifier definitions, reason codes, and validation criteria are included as **Appendix A**. Data validation reports, which discuss individual findings for each quality control element [by sample delivery group (SDG)], are provided in **Appendix B**. Data validation worksheets and communication records are organized by SDG and will be kept on file at EcoChem.

PROCESS FOR DATA VALIDATION

All electronic data deliverable files (EDD) were verified by comparing 100% of the field sample results and 10% of the QC sample results to the hardcopy data package.

Sixty percent (60%) of the data received a Level III validation, which included evaluation (as appropriate for each method) of:

- Package completeness
- Sample chain-of-custody and sample preservation
- Analytical holding times
- Blank contamination
- Precision (replicate analyses)
- Accuracy (compound recovery)
- Chromatogram review (pesticide, PCB, and fuel fractions)
- Detection limits
- Instrument performance (initial calibration, continuing calibration, tuning, sensitivity and degradation)

All other data packages received full (Level IV) data validation, which includes evaluation of compound identification and quantitation (transcription and calculation checks).

A dual-tier system of primary and secondary reviewers is utilized to ensure technical correctness and QC of the validation process; and all data validation is documented using standardized and controlled validation worksheets and spreadsheets. These worksheets are completed for each SDG, documenting all deficiencies, outliers and subsequent qualifiers.

After qualifiers are entered into the EcoChem database, a second party verifies 100% of the qualifier entry. Interpretive qualifiers are then applied to the field samples and qualified data is exported to the project database (Integral).

SUMMARY OF DATA VALIDATION:

Twenty (20) water samples were analyzed for aniline, pentachlorophenol, gamma-BHC (Lindane), diazinon, and copper. The water samples represented different concentrations of these analytes at different time periods after dosing, as part of the lamprey ammocoete toxicity test study. Columbia Analytical Services (CAS) completed the analyses.

The data for the samples were acceptable. None of the data were qualified for any reason.

The laboratory data were evaluated in terms of completeness, holding times, instrument performance, bias, and precision. The results of the QC procedures used during sample analyses are discussed below.

Completeness of Data Set

Completeness is defined as the total number of usable results (results that were not rejected during data validation) divided by the total results reported by the laboratory. The results reported by the laboratory were 100% complete.

Holding Times and Sample Preservation

All samples were extracted and analyzed within the method specified holding times.

Instrument Performance

Calibrations

Initial and continuing calibrations were completed at the proper frequency. All initial and continuing calibrations met all acceptance criteria.

Endrin/DDT Breakdown

Breakdown evaluation mixtures were analyzed at the proper frequency to measure percent breakdown. All percent breakdown values met the acceptance criteria.

Method Blank Analyses

To assess the impact of each blank contaminant on the reported sample results, an action level is established at five times (5x) the concentration detected in the blank. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified as not detected (U). If the result is also less than the reporting limit, then the result is elevated to the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

Gamma-BHC (Lindane) was detected in several method blanks. The concentrations in the associated samples were greater than the action level. No action was necessary. All other method blanks were free of contamination.

Accuracy

Surrogate Compound Recoveries

The surrogates were either not recovered or the recovery value was outside the control limits in several of the gamma-BCH (Lindane) and diazinon analyses due to the required dilution factors. No action was taken. All other surrogate recovery values were acceptable.

Matrix Spike Recoveries

Matrix and duplicate matrix spike (MS/MSD) analyses were not performed. Accuracy was assessed using the surrogate compound and laboratory control sample (LCS) analyses.

Laboratory Control Sample Recoveries

The gamma-BHC (Lindane) recovery was greater than the upper control limit in one LCS analysis. Since the recoveries were acceptable in the associated LCS duplicate (LCSD) analysis and in all other LCS/LSCD sets, no action was taken. The recovery values for all other analytes were acceptable in all other LCS/LCSD sets.

Precision

LCS/LCSD analyses were evaluated for laboratory precision. All relative percent difference (RPD) values were acceptable.

Method Detection Limits and Method Reporting Limits

With the exception of the copper analyses, most of the samples were analyzed at dilution factors ranging from 5x to 50,000x. Detection/reporting limits were adjusted accordingly.

Field Quality Control Samples

No field QC samples were collected for this study.

DATA VALIDATION REPORT Portland Harbor RI/FS Lamprey Toxicity Study Aniline by EPA Method 8270C Columbia Analytical Services - Kelso

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Columbia Analytical Services, Inc., Kelso, Washington.

SDG	No. Samples	Validation Level
K0610008	5 Water	Full
K0610013	10 Water	Summary
K0610065	5 Water	Summary

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%).

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Holding Times and Sample Receipt	1	Matrix Spikes/Matrix Spike Duplicates
	Initial Calibration (ICAL)		Laboratory Control Samples (LCS/LCSD)
	Continuing Calibration (CCAL)	1	Reporting Limits (MDL and MRL)
	Laboratory Blanks		Compound Identification
	Surrogate Compounds	1	Calculation Verification (full validation only)

¹ Quality control results are discussed below, but no data were qualified.

Holding Times and Sample Receipt

Some coolers were received at temperatures below the recommended range of $4^{\circ}\text{C} \pm 2^{\circ}$. These temperature outliers did not impact data quality and no qualifiers were required.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Matrix Spike/Matrix Spike Duplicates

No matrix spike/matrix spike duplicate analyses were performed with these SDG due to limited sample volumes. Accuracy and precision were assessed from the laboratory control sample/laboratory control sample duplicate (LCS/LCSD).

Reporting Limits (Method Detection Limit and Method Reporting Limit)

The reporting limits were elevated in the following samples due to dilutions:

SDG	Sample ID	Dilution Factor
K00610008	NAS# 0790G Day 0 – 1000 mg/L Aniline	10,000x
	NAS# 0791G Day 0 – 100 mg/L Aniline	1,000x
	NAS# 0792G Day 0 – 10 mg/L Aniline	50x
	NAS #0793G Day 0 – 1.0 mg/L Aniline	5x
K00610013	NAS# 0805G 48-hr – 1000 mg/L Aniline Old	10,000x
	NAS# 0829G 48-hr – 100 mg/L Aniline Old	1,000x
	NAS# 0829G 48-hr – 10 mg/L Aniline Old	100x
	NAS# 0829G 48-hr – 1.0 mg/L Aniline Old	10x
	NAS# 0830G 48-hr – 1000 mg/L Aniline Old	10,000x
	NAS# 0830G 48-hr – 100 mg/L Aniline New	1,000x
	NAS# 0832G 48-hr – 10 mg/L Aniline New	50x
	NAS #0833G 48-hr – 1.0 mg/L Aniline New	10x
K0610065	NAS# 0850G 96 hr-1000 mg/L Aniline	10,000x
	NAS# 0851G 96 hr-100 mg/L Aniline	1,000x
	NAS# 0852G 96 hr-10 mg/L Aniline	100x
	NAS# 0853G 96 hr-1 mg/L Aniline	10x

Calculation Verification

SDG K0610008: Calculation verifications were performed on this SDG. No errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory performed an appropriate analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values. Precision was acceptable as demonstrated by the relative percent difference values for the LCS/LCSD analyses.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Portland Harbor RI/FS Lamprey Toxicity Study Pentachlorophenol - EPA Method 8151 Columbia Analytical Services - Kelso

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Columbia Analytical Services, Inc., Kelso, Washington.

SDG	No. Samples	Validation Level
K0610008	5 Water	Full
K0610013	10 Water	Summary
K0610065	5 Water	Summary

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%).

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Holding Times and Sample Receipt	1	Matrix Spikes/Matrix Spike Duplicates
	Initial Calibration (ICAL)		Laboratory Control Samples (LCS/LCSD)
	Continuing Calibration (CCAL)	1	Reporting Limits (MDL and MRL)
	Laboratory Blanks		Compound Identification
	Surrogate Compounds	1	Calculation Verification (full validation only)

¹ Quality control results are discussed below, but no data were qualified.

Holding Times and Sample Receipt

Some coolers were received at temperatures below the recommended range of $4^{\circ}\text{C} \pm 2^{\circ}$. These temperature outliers did not impact data quality and no qualifiers were required.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Matrix Spike/Matrix Spike Duplicates

No matrix spike/matrix spike duplicate analyses were performed due to limited sample volumes. Accuracy and precision were assessed from the laboratory control sample/laboratory control sample duplicate (LCS/LCSD).

Reporting Limits (Method Detection Limit and Method Reporting Limit)

The reporting limits were elevated in the following samples due to dilutions:

SDG	Sample ID	Dilution Factor
K00610008	NAS# 0780G Day 0 – 4.0 mg/L Penta	50x
	NAS #0781G Day 0 – 0.4 mg/L Penta	20x
K00610013	NAS# 0805G 48-hr – 4.0 mg/L Penta Old	50x
	NAS# 0806G 48-hr – 0.4 mg/L Penta Old	20x
	NAS# 0810G 48-hr – 4.0 mg/L Penta New 50x	
	NAS #0811G 48-hr – 0.4 mg/L Penta New	20x
K0610065	NAS# 0840G 96 hr-4.0mg/L Penta	40x
	NAS# 0841G 96 hr-0.4mg/L Penta	5x

Calculation Verification

SDG K0610008: Calculation verifications were performed on this SDG. No calculation errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory performed an appropriate analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values. Precision was acceptable as demonstrated by the relative percent difference values for the LCS/LCSD analyses.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Portland Harbor RI/FS Lamprey Toxicity Study gamma-BHC (Lindane) - EPA Method 8081A Columbia Analytical Services - Kelso

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Columbia Analytical Services, Inc., Kelso, Washington.

SDG	No. Samples	Validation Level
K0610008	5 Water	Full
K0610013	10 Water	Summary
K0610065	5 Water	Summary

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%).

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- Holding Times and Sample Receipt Instrument Breakdown Check Initial Calibration (ICAL)
 Continuing Calibration (CCAL)
- 1 Laboratory Blanks
- 1 Surrogate Compounds

- 1 Matrix Spikes/Matrix Spike Duplicates
- 1 Laboratory Control Samples (LCS)
- Reporting Limits (MDL and MRL)
 Compound Identification
- 1 Calculation Verification (full validation only)

Holding Times and Sample Receipt

Some coolers were received at temperatures below the recommended range of $4^{\circ}\text{C} \pm 2^{\circ}$. These temperature outliers did not impact data quality and no qualifiers were required.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Laboratory Blanks

Method blanks are used to evaluate all associated samples, including field blanks. Any remaining positive results in the field blanks are used to evaluate all associated samples.

To assess the impact of each blank contaminant on the reported sample results, an action level is established at five times the concentration detected in the blank. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified as not detected (U-7). If the result is also less than the reporting limit, then the result is elevated to the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

SDGs K0610008 & K0610013: A positive value for gamma-BHC (lindane) was reported in the method blank. All sample results were greater than the action level and no qualifiers were required.

SDG K0610065: A positive value for gamma-BHC was reported in the method blank. All sample results were greater than the action level and no qualifiers were required.

Surrogate Compounds

SDG K0610008: Surrogates were not recovered or recovered outside the control limits in Samples NAS# 0785G Day0 – 8.0 mg/L Lindane (20,000x) and NAS# 0786G Day 0 – 0.8 mg/L Lindane (2,500x) due to sample dilution. No qualifiers were assigned.

SDG K0610013: Surrogates were not recovered in some samples due to sample dilution:

```
NAS# 0815G 48-hr – 8.0 mg/L Lindane Old (5,000x)
NAS# 0816G 48-hr – 0.8 mg/L Lindane Old (500x)
NAS# 0820G 48-hr – 8.0 mg/L Lindane New (50,000x)
NAS# 0821G 48-hr – 0.8 mg/L Lindane New (5,000x)
NAS #0822G 48-hr – 0.08 mg/L Lindane New (250x)
```

No qualifiers were assigned.

SDG K0610065: Surrogates were not recovered or recovered outside the control limits due to sample dilutions in Samples NAS# 0845G 96hr – 8.0 mg/L Lindane (50,000x) and NAS# 0846G 96hr – 0.8 mg/L Lindane (5,000x). No qualifiers were assigned.

Matrix Spike/Matrix Spike Duplicates

No matrix spike/matrix spike duplicate (MS/MSD) analyses were performed with these SDG due to limited sample volumes. Accuracy and precision were assessed from the laboratory control sample/laboratory control sample duplicate (LCS/LCSD).

Laboratory Control Samples

SDG K0610065: The percent recovery (%R) value for gamma-BHC (lindane) in the LCS was greater than the upper control limit of 130%, at 155%. The %R value in the LCSD was acceptable and no qualifiers were assigned.

Reporting Limits (Method Detection Limit and Method Reporting Limit)

The reporting limits were elevated in the following samples due to dilutions:

SDG	Sample ID	Dilution Factor
K00610008	NAS# 0785G Day 0 – 8.0 mg/L Lindane	20,000x
	NAS# 0786G Day 0 – 0.8 mg/L Lindane	2,500x
	NAS# 0787G Day 0 – 0.08 mg/L Lindane	250x
	NAS# 0788G Day 0- 0.008 mg/L Lindane	50x
	NAS #0789G Day 0 – 0 mg/L Lindane	20x
K00610013	NAS# 0815G 48-hr – 8.0 mg/L Lindane Old	5,000x
	NAS# 0816G 48-hr – 0.8 mg/L Lindane Old	500x
	NAS# 0817G 48-hr – 0.08 mg/L Lindane Old	250x
	NAS# 0818G 48-hr – 0.008 mg/L Lindane Old	50x
	NAS# 0819G 48-hr – 0 mg/L Lindane Old	10x
	NAS# 0820G 48-hr – 8.0 mg/L Lindane New	50,000x
	NAS# 0821G 48-hr – 0.8 mg/L Lindane New	5,000x
	NAS #0822G 48-hr – 0.08 mg/L Lindane New	250x
	NAS #0823G 48-hr – 0.008 mg/L Lindane New	50x
K0610065	NAS# 0845G 96hr 0 – 8.0 mg/L Lindane	50,000x
	NAS# 96hr – 0.8 mg/L Lindane	5,000x
	NAS# 0847G 96hr - 0.08 mg/L Lindane	100x
	NAS# 0848G 96hr- 0.008 mg/L Lindane	100x
	NAS #0849G 96hr – 0 mg/L Lindane	100x

Calculation Verification

SDG K0610008: Calculation verifications were performed on this SDG. No calculation errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory performed an appropriate analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD %R values, with the exceptions noted above. Precision was acceptable as demonstrated by the relative percent difference values for the LCS/LCSD analyses.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Portland Harbor RI/FS Lamprey Toxicity Study Diazinon - EPA Method 8141A Columbia Analytical Services - Kelso

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Columbia Analytical Services, Inc., Kelso, Washington.

SDG	No. Samples	Validation Level
K0610210	5 Water	Summary
K0610229	10 Water	Summary
K0610283	5 Water	Full

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy data package. Laboratory QC results were also verified (10%).

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Holding Times and Sample Receipt Instrument Breakdown Check Initial Calibration (ICAL) Continuing Calibration (CCAL) Laboratory Blanks
- 1 Surrogate Compounds

- Matrix Spikes/Matrix Spike Duplicates Laboratory Control Samples (LCS)
- Reporting Limits (MDL and MRL)
 Compound Identification
- 1 Calculation Verification (full validation only)

Holding Times and Sample Receipt

SDG K0610210: The validation guidance documents state that the cooler temperatures should be within an advisory temperature range of 2° to 6°C. The laboratory received the sample cooler at 9.4°C. This outlier was determined to have no impact on data quality and no qualifiers were assigned.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Surrogate Compounds

SDG K0610210: Surrogates were not recovered in Samples NAS# 0855G Day 0 – 40 mg/L Diazinon (5,000x) and NAS# 0856G Day 0 – 4.0 mg/L Diazinon (500x) due to sample dilution. No qualifiers were assigned.

SDG K0610229: Surrogates were not recovered in Samples NAS# 0860G 48-hr – 40 mg/L Diazinon Old (5,000x), NAS# 0861G 48-hr – 4.0 mg/L Diazinon Old (500x), NAS# 0865G 48-hr – 40 mg/L Diazinon New (10,000x), and NAS #0866G 48-hr – 4.0 mg/L Diazinon New (1,000x) due to sample dilution. No qualifiers were assigned.

SDG K0610283: Surrogates were not recovered in Samples NAS# 0870G 96-hr-40 mg/L Diazinon (5,000x) and NAS# 0871G 96-hr-4.0 mg/L Diazinon (500x) due to sample dilution. No qualifiers were assigned.

Matrix Spike/Matrix Spike Duplicates

SDG K0610210, K0610229, & K0610283: No matrix spike/matrix spike duplicate (MS/MSD) analyses were performed with these SDG due to limited sample volumes. Accuracy and precision were assessed from the laboratory control sample/laboratory control sample duplicate (LCS/LCSD).

Reporting Limits (Method Detection Limit and Method Reporting Limit)

The reporting limits were elevated in the following samples due to dilutions:

SDG	Sample ID	Dilution Factor
K00610210	NAS# 0855G Day 0 – 40 mg/L Diazinon	5,000x
	NAS# 0856G Day 0 – 4.0 mg/L Diazinon	500x
	NAS# 0857G Day 0 – 0.4 mg/L Diazinon	50x
	NAS# 0858G Day 0 – 0.04 mg/L Diazinon	10x
K00610229	NAS# 0860G 48-hr – 40 mg/L Diazinon Old	5,000x
	NAS# 0861G 48-hr – 4.0 mg/L Diazinon Old	500x
	NAS# 0862G 48-hr – 0.4 mg/L Diazinon Old	50x
	NAS# 0863G 48-hr – 0.04 mg/L Diazinon Old	10x
	NAS# 0865G 48-hr – 40 mg/L Diazinon New	10,000x
	NAS# 0866G 48-hr – 4.0 mg/L Diazinon New	1,000x
	NAS# 0867G 48-hr – 0.4 mg/L Diazinon New	100x
	NAS# 0868G 48-hr – 0.04 mg/L Diazinon New	10x
K0610065	NAS# 0870G 96-hr – 40 mg/L Diazinon	5,000x
	NAS# 0871G 96-hr – 4.0 mg/L Diazinon	500x
	NAS# 0872G 96-hr – 0.4 mg/L Diazinon	50x
	NAS# 0873G 96-hr – 0.04 mg/L Diazinon	10x

Calculation Verification

SDG K0610283: Calculation verifications were performed on this SDG. No errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory performed an appropriate analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values, with the exceptions noted above. Precision was acceptable as demonstrated by the relative percent difference values for the LCS/LCSD.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Portland Harbor RI/FS Lamprey Toxicity Study Copper - EPA Method 200.8 Columbia Analytical Services - Kelso

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Columbia Analytical Services, Inc., Kelso, Washington.

SDG	No. Samples	Validation Level	
K0610008	5 Water	Full	
K0610013	10 Water	Summary	
K0610065	5 Water	Summary	

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

I. EDD TO HARDCOPY VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Laboratory QC results were also verified (10%).

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Holding Times and Sample Preservation

 Initial Calibration
 Calibration Verification
 CRDL Standards
 Laboratory Duplicates
 ICPMS Internal Standards
 Reporting Limits (MDL and MRL)

 Laboratory Blanks
 Calculation Verification (Full validation only)

Laboratory Control Samples

¹ Quality control results are discussed below, but no data were qualified.

Holding Times and Sample Preservation

Some coolers were received at temperatures below the recommended range of $4^{\circ}C \pm 2^{\circ}$. These temperature outliers did not impact data quality and no qualifiers were assigned.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Calculation Verification

SDG K0610008: Several results were verified by recalculation from the raw data. No calculation or transcription errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory performed an appropriate analytical method. Accuracy was acceptable, as demonstrated by the LCS/LCSD and MS percent recovery values. Precision was acceptable as demonstrated by the relative percent difference values for the LCS/LCSD and laboratory duplicate analyses.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

APPENDIX E. PHOTO DOCUMENTATION

Photo 1: Siletz River 1

Photo 2: Siletz River 2

Photo 3: Electrofishing

Photo 4: Ammocoete caught in net

Photo 5: Ammocoetes in catch bucket

Photo 6: Ammocoetes transferred to cooler 1

Photo 7: Ammocoetes transferred to cooler 2

Photo 8: Packing coolers

Photo 9: Transport of coolers

Photo 10: Temperature room with 14 tanks

Photo 11: Ten-gallon tank setup

Photo 12: Head tank

Photo 13: Holding tank

Photo 14: Chiller system